UOJ 310 黎明前的巧克力(FWT)
【题目链接】 http://uoj.ac/problem/310
【题目大意】
给出一个数集,A从中选择一些数,B从中选择一些数,不能同时不选
要求两者选择的数异或和为0,问方案数
【题解】
题目等价于选取一个非空且xor为0的集合并将其拆分为两个子集的方案数
用dp表示xor为j的方案数,易得dp方程dp[i][j]=dp[i-1][j]+2*dp[i-1][j^a[i]]
该式等价于dp数组与只有两个元素有值的g[0]=1,g[a[i]]=2的数组做卷积运算
对g数组进行反演可以发现每次卷积的数组只包含3和-1,
那么我们只要知道对一个下标来说,做的n次卷积中有几个3和-1,
就能够直接乘算出答案,根据FWT的和等于和的FWT,我们将多次需要做卷积的数组相加,
一并做FWT,得到他们和的反演值,在每个位置解关于3和-1的二元一次方程组,
再将其替换为正确值,最后FWT求逆之后下标为0的答案减去1就是答案,
减一是因为两个人取数不能同时为空。
【代码】
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int P=998244353;
const int inv2=(P+1)>>1;
const int N=2000000;
void FWT(int*a,int n){
for(int d=1;d<n;d<<=1)for(int m=d<<1,i=0;i<n;i+=m)for(int j=0;j<d;j++){
int x=a[i+j],y=a[i+j+d];
a[i+j]=(x+y)%P,a[i+j+d]=(x-y+P)%P;
}
}
void UFWT(int*a,int n){
for(int d=1;d<n;d<<=1)for(int m=d<<1,i=0;i<n;i+=m)for(int j=0;j<d;j++){
int x=a[i+j],y=a[i+j+d];
a[i+j]=1LL*(x+y)*inv2%P,a[i+j+d]=1LL*(x-y)*inv2%P;
}
}
int n,x,mx,pw[N],a[N];
int main(){
pw[0]=1;
for(int i=1;i<N;i++)pw[i]=3LL*pw[i-1]%P;
while(~scanf("%d",&n)){
memset(a,0,sizeof(a));
for(int i=mx=1;i<=n;i++){
scanf("%d",&x);
a[0]++; a[x]+=2;
mx=max(mx,x);
}
int m=1;
while(m<=mx)m<<=1;
FWT(a,m);
for(int i=0;i<m;i++){
x=(3ll*n+P-a[i])*inv2%P*inv2%P;
a[i]=(x&1)?(P-pw[n-x])%P:pw[n-x];
}
UFWT(a,m);
printf("%d\n",(a[0]+P-1)%P);
}
return 0;
}
UOJ 310 黎明前的巧克力(FWT)的更多相关文章
- UOJ #310 黎明前的巧克力 FWT dp
LINK:黎明前的巧克力 我发现 很多难的FWT的题 都和方程有关. 上次那个西行寺无余涅槃 也是各种解方程...(不过这个题至今还未理解. 考虑dp 容易想到f[i][j][k]表示 第一个人得到巧 ...
- UOJ #310 黎明前的巧克力 (FWT)
题目传送门 题目大意:给你一个序列,定义一个子序列的权值表示子序列中元素的异或和,现在让你选出两个互不相交的子序列,求选出的这两个子序列权值相等的方案数,$n,a_{i}\leq 10^{6}$ 这是 ...
- uoj310【UNR #2】黎明前的巧克力(FWT)
uoj310[UNR #2]黎明前的巧克力(FWT) uoj 题解时间 对非零项极少的FWT的优化. 首先有个十分好想的DP: $ f[i][j] $ 表示考虑了前 $ i $ 个且异或和为 $ j ...
- UOJ#310 【UNR #2】黎明前的巧克力 FWT 多项式
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ310.html 题目传送门 - UOJ#310 题意 给定 $n$ 个数 ,请你选出两个不相交的集合(两个 ...
- 【uoj#310】[UNR #2]黎明前的巧克力 FWT
题目描述 给出 $n$ 个数,从中选出两个互不相交的集合,使得第一个集合与第二个集合内的数的异或和相等.求总方案数. 输入 第一行一个正整数 $n$ ,表示巧克力的个数.第二行 $n$ 个整数 $a_ ...
- UOJ#310. 【UNR #2】黎明前的巧克力(FWT)
题意 题目链接 Sol 挂一个讲的看起来比较好的链接 然鹅我最后一步还是没看懂qwq.. 坐等SovietPower大佬发博客 #include<bits/stdc++.h> using ...
- UOJ310. 【UNR #2】黎明前的巧克力 [FWT]
UOJ 思路 显然可以转化一下,变成统计异或起来等于0的集合个数,这样一个集合的贡献是\(2^{|S|}\). 考虑朴素的\(dp_{i,j}\)表示前\(i\)个数凑出了\(j\)的方案数,发现这其 ...
- [FWT] UOJ #310. 【UNR #2】黎明前的巧克力
[uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...
- 【UOJ#310】【UNR#2】黎明前的巧克力(FWT)
[UOJ#310][UNR#2]黎明前的巧克力(FWT) 题面 UOJ 题解 把问题转化一下,变成有多少个异或和为\(0\)的集合,然后这个集合任意拆分就是答案,所以对于一个大小为\(s\)的集合,其 ...
随机推荐
- linux===sar命令性能监控
sar介绍: sar是System Activity Reporter(系统活动情况报告)的缩写.sar工具将对系统当前的状态进行取样,然后通过计算数据和比例来表达系统的当前运行状态.它的特点是可以连 ...
- Mysql中truncate table和delete语句的区别
Mysql中的truncate table和delete语句都可以删除表里面所有数据,但是在一些情况下有些不同! 例子: truncate table gag; (1)truncate table删除 ...
- 一步一步搭建oracle 11gR2 rac+dg之共享磁盘设置(三)【转】
一步一步在RHEL6.5+VMware Workstation 10上搭建 oracle 11gR2 rac + dg 之共享磁盘准备 (三) 注意:这一步是配置rac的过程中非常重要的一步,很多童鞋 ...
- 牛x的JavaScript编辑器你知道几个
英文:Martin Heller 译文:葡萄城控件 学习过程中遇到什么问题或者想获取学习资源的话,欢迎加入学习交流群343599877,我们一起学前端! 对于JavaScript程序员来说,目前有很 ...
- java基础30 List集合下的LinkedList集合
单例集合体系: ---------| collection 单例集合的根接口--------------| List 如果实现了list接口的集合类,具备的特点:有序,可重复 注:集合 ...
- java基础20 StringBuffer缓冲类
1.概要 StringBuffer 其实就是一个存储字符的容器 字符串特点:字符串是常量;它们创建之后不能更改了字符串一旦发生变化,那么立马创建一个新的对象.注意:字符串的内容不适合频繁修改的,因为一 ...
- Elasticsearch零停机时间更新索引配置或迁移索引
本文介绍Elasticsearch零宕机时间更新索引配置映射内容的方法,包括字段类型.分词器.分片数等.方法原理就是,利用别名机制,给索引配置别名,所有应用程序都通过别名访问索引.重建索引,通过索引原 ...
- CSS3实现扇形动画菜单特效
CSS3实现扇形动画菜单特效 效果图: 代码如下,复制即可使用: <!DOCTYPE html> <html> <head> <meta charset=&q ...
- Extjs 代码拾穗
1.tree grid 添加一行 var rootNode = store.getRootNode(); var newRecord = Ext.create('MatrixDlv',{"s ...
- LeetCode699. Falling Squares
On an infinite number line (x-axis), we drop given squares in the order they are given. The i-th squ ...