P4360 [CEOI2004]锯木厂选址
P4360 [CEOI2004]锯木厂选址
这™连dp都不是
\(f_i\)表示第二个锯木厂设在\(i\)的最小代价
枚举1号锯木厂
\(f_i=min_{0<=j<i}(\sum_{i=1}^{n}w_id_i-D_jW_j-D_iW_i+D_iW_j)\)
D为距离后缀和,W为重量前缀和
\(f_i=min_{0<=j<i}(D_iW_j-D_jW_j)+\sum_{i=1}^{n}w_id_i-D_iW_i\)
\(X=D_i,K=W_j,B=-D_jW_j\)
// It is made by XZZ
#include<cstdio>
#include<algorithm>
#define il inline
#define rg register
#define vd void
#define sta static
typedef long long ll;
il int gi(){
rg int x=0,f=1;rg char ch=getchar();
while(ch<'0'||ch>'9')f=ch=='-'?-1:f,ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
struct line{int k,b;};
double operator *(const line&a,const line&b){return(double)(a.b-b.b)/(b.k-a.k);}
line que[20100];
int w[20100],d[20100];
int s[20100],S[20100];
il int get(line&a,int x){return a.k*x+a.b;}
main(){
#ifdef xzz
freopen("4360.in","r",stdin);
freopen("4360.out","w",stdout);
#endif
int n=gi();
for(rg int i=1;i<=n;++i)w[i]=gi(),d[i]=gi();
for(rg int i=n;i;--i)d[i]+=d[i+1];
for(rg int i=1;i<=n;++i)s[i]=w[i]*d[i];
for(rg int i=n;i;--i)S[i]=S[i+1]+s[i];
for(rg int i=1;i<=n;++i)w[i]+=w[i-1];
int hd=0,tl=0,ans=2e9;
que[tl++]=(line){0,0};
for(rg int i=1;i<=n;++i){
while(tl-hd>1&&get(que[hd],d[i])>get(que[hd+1],d[i]))++hd;
ans=std::min(ans,get(que[hd],d[i])+S[1]-w[i]*d[i]);
line x=(line){w[i],-w[i]*d[i]};
while(tl-hd>1&&x*que[tl-1]>que[tl-1]*que[tl-2])--tl;
que[tl++]=x;
}
printf("%lld\n",ans);
return 0;
}
P4360 [CEOI2004]锯木厂选址的更多相关文章
- 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)
传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...
- 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)
传送门 我可能根本就没有学过斜率优化…… 我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯 ...
- luogu P4360 [CEOI2004]锯木厂选址
斜率优化dp板子题[迫真] 这里从下往上标记\(1-n\)号点 记\(a_i\)表示前缀\(i\)里面树木的总重量,\(l_i\)表示\(i\)到最下面的距离,\(s_i\)表示\(1\)到\(i-1 ...
- 洛谷P4360 [CEOI2004]锯木厂选址(dp 斜率优化)
题意 题目链接 Sol 枚举第二个球放的位置,用前缀和推一波之后发现可以斜率优化 // luogu-judger-enable-o2 #include<bits/stdc++.h> #de ...
- luoguP4360 [CEOI2004]锯木厂选址
题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...
- 动态规划(斜率优化):[CEOI2004]锯木厂选址
锯木场选址(CEOI2004) 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运.山脚下有 ...
- [BZOJ2684][CEOI2004]锯木厂选址
BZOJ权限题! Description 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运 ...
- cogs 362. [CEOI2004]锯木厂选址
★★★ 输入文件:two.in 输出文件:two.out 简单对比 时间限制:0.1 s 内存限制:32 MB 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来. ...
- LG4360 [CEOI2004]锯木厂选址
题意 原题来自:CEOI 2004 从山顶上到山底下沿着一条直线种植了 n 棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能朝山下运.山脚下有一个锯木厂 ...
随机推荐
- REST framework 视图层
我们之前写的 get post 请求 要写很多 我们现在可以使用rest——framework给我们封装好的类 GenericAPIView 给我们提供了自动匹配验证的信息内部封装 from r ...
- October 03rd 2017 Week 40th Tuesday
Don't make promises you can't keep. But those are the best kind. 不要许下做不到的承诺,但是我们做不到的承诺往往是最好的. The be ...
- Maven实战系列文章目录
Maven实战(一)安装与配置 Maven实战(二)构建简单Maven项目 Maven实战(三)Eclipse构建Maven项目 Maven实战(四)生命周期 Maven实战(五)坐标详解 Maven ...
- codeforces 933D A Creative Cutout
题目链接 正解:组合数学. 充满套路与细节的一道题.. 首先我们显然要考虑每个点的贡献(我就不信你能把$f$给筛出来 那么对于一个点$(x,y)$,我们设$L=x^{2}+y^{2}$,那么它的贡献就 ...
- MongoDb 物理位置应用实现
1代码实现 官方驱动2.7版本 1.1范围查找 /// <summary> /// 半径范围查找位置信息 /// </summary> /// <param name=& ...
- Hive学习之路 (三)Hive元数据信息对应MySQL数据库表
概述 Hive 的元数据信息通常存储在关系型数据库中,常用MySQL数据库作为元数据库管理.上一篇hive的安装也是将元数据信息存放在MySQL数据库中. Hive的元数据信息在MySQL数据中有57 ...
- 在Windows10中更改”WIN+E“快捷键打开目标
1> 复制下面代码到记事本保存为launch.vbs 2> 然后打开Regedit.exe并创建以下注册表分支 HKCU:\Software\Classes\CLSID\{52205fd8 ...
- python3 unittest框架失败重跑加截图支持python2,python3
github源码地址下载:https://github.com/GoverSky/HTMLTestRunner_cn.git 解压文件后取出/HTMLTestRunner_cn.py文件丢进C:\Py ...
- http协议cookie结构分析
Http协议中Cookie详细介绍 Cookie总是保存在客户端中,按在客户端中的存储位置,可分为内存Cookie和硬盘Cookie.内存Cookie由浏览器维护,保存在内存中,浏览器关闭后就消失 ...
- [NOIp2015]运输计划 (二分 $+$ 树上差分)
#\(\mathcal{\color{red}{Description}}\) \(Link\) 在一棵带有边权的树上,可以选择使一条边权为零.然后对于所有\(M\)条链,使其链长最大值最小. #\( ...