P4360 [CEOI2004]锯木厂选址


这™连dp都不是

\(f_i\)表示第二个锯木厂设在\(i\)的最小代价

枚举1号锯木厂

\(f_i=min_{0<=j<i}(\sum_{i=1}^{n}w_id_i-D_jW_j-D_iW_i+D_iW_j)\)

D为距离后缀和,W为重量前缀和

\(f_i=min_{0<=j<i}(D_iW_j-D_jW_j)+\sum_{i=1}^{n}w_id_i-D_iW_i\)

\(X=D_i,K=W_j,B=-D_jW_j\)

// It is made by XZZ
#include<cstdio>
#include<algorithm>
#define il inline
#define rg register
#define vd void
#define sta static
typedef long long ll;
il int gi(){
rg int x=0,f=1;rg char ch=getchar();
while(ch<'0'||ch>'9')f=ch=='-'?-1:f,ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
struct line{int k,b;};
double operator *(const line&a,const line&b){return(double)(a.b-b.b)/(b.k-a.k);}
line que[20100];
int w[20100],d[20100];
int s[20100],S[20100];
il int get(line&a,int x){return a.k*x+a.b;}
main(){
#ifdef xzz
freopen("4360.in","r",stdin);
freopen("4360.out","w",stdout);
#endif
int n=gi();
for(rg int i=1;i<=n;++i)w[i]=gi(),d[i]=gi();
for(rg int i=n;i;--i)d[i]+=d[i+1];
for(rg int i=1;i<=n;++i)s[i]=w[i]*d[i];
for(rg int i=n;i;--i)S[i]=S[i+1]+s[i];
for(rg int i=1;i<=n;++i)w[i]+=w[i-1];
int hd=0,tl=0,ans=2e9;
que[tl++]=(line){0,0};
for(rg int i=1;i<=n;++i){
while(tl-hd>1&&get(que[hd],d[i])>get(que[hd+1],d[i]))++hd;
ans=std::min(ans,get(que[hd],d[i])+S[1]-w[i]*d[i]);
line x=(line){w[i],-w[i]*d[i]};
while(tl-hd>1&&x*que[tl-1]>que[tl-1]*que[tl-2])--tl;
que[tl++]=x;
}
printf("%lld\n",ans);
return 0;
}

P4360 [CEOI2004]锯木厂选址的更多相关文章

  1. 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)

    传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...

  2. 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)

    传送门 我可能根本就没有学过斜率优化…… 我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯 ...

  3. luogu P4360 [CEOI2004]锯木厂选址

    斜率优化dp板子题[迫真] 这里从下往上标记\(1-n\)号点 记\(a_i\)表示前缀\(i\)里面树木的总重量,\(l_i\)表示\(i\)到最下面的距离,\(s_i\)表示\(1\)到\(i-1 ...

  4. 洛谷P4360 [CEOI2004]锯木厂选址(dp 斜率优化)

    题意 题目链接 Sol 枚举第二个球放的位置,用前缀和推一波之后发现可以斜率优化 // luogu-judger-enable-o2 #include<bits/stdc++.h> #de ...

  5. luoguP4360 [CEOI2004]锯木厂选址

    题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...

  6. 动态规划(斜率优化):[CEOI2004]锯木厂选址

    锯木场选址(CEOI2004) 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运.山脚下有 ...

  7. [BZOJ2684][CEOI2004]锯木厂选址

    BZOJ权限题! Description 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运 ...

  8. cogs 362. [CEOI2004]锯木厂选址

    ★★★   输入文件:two.in   输出文件:two.out   简单对比 时间限制:0.1 s   内存限制:32 MB 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来. ...

  9. LG4360 [CEOI2004]锯木厂选址

    题意 原题来自:CEOI 2004 从山顶上到山底下沿着一条直线种植了 n 棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能朝山下运.山脚下有一个锯木厂 ...

随机推荐

  1. [UI] 精美UI界面欣赏[9]

    精美UI界面欣赏[9]

  2. 【2017.12.05 智能驾驶/汽车电子】转载:如何成为一名无人驾驶工程师 By刘少山

    之前对无人驾驶的理解就是通过刘少山老师的书:第一本无人驾驶技术书 通读之后,对智能驾驶有了一个初步的认识,如感知.决策.控制都涉及哪些领域,有哪些可以利用的技术: 但经过一段时间的实践,发现即使是在我 ...

  3. [2018HN省队集训D5T2] party

    [2018HN省队集训D5T2] party 题意 给定一棵 \(n\) 个点以 \(1\) 为根的有根树, 每个点有一个 \([1,m]\) 的权值. 有 \(q\) 个查询, 每次给定一个大小为 ...

  4. 映射函数map

    映射函数map 语法: map(function, iterable) 迭代对象中 的每一个元素进行映射, 分别执行function函数 例子:  ls =[1,2,3,4,5,6] def func ...

  5. SQL Server错误处理

    一.SQLServer数据库引擎错误 1.查询系统错误信息 SQLServer在每个数据库的系统视图sys.messages中存储系统自定义(Message_id <= 50000)和用户自定义 ...

  6. eoLinker-AMS接口管理系统

    多端阅读<eoLinker-AMS接口管理系统>: 在PC/MAC上查看:下载w3cschool客户端,进入客户端后通过搜索当前教程手册的名称并下载,就可以查看当前离线教程文档.下载eoL ...

  7. JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释 (生动形象)

    [转自]:https://blog.csdn.net/sd4015700/article/details/50109939 jvm区域总体分两类,heap区和非heap区.heap区又分:Eden S ...

  8. 一劳永逸部署项目:通过tomcat加载环境变量

    一劳永逸部署项目:通过tomcat加载环境变量 转载自:https://blog.csdn.net/u010414666/article/details/46499953 一.说明 项目中经常会用到x ...

  9. Zookeeper学习之路 (二)集群搭建

    ZooKeeper 软件安装须知 鉴于 ZooKeeper 本身的特点,服务器集群的节点数推荐设置为奇数台.我这里我规划为三台, 为别为 hadoop1,hadoop2,hadoop3 ZooKeep ...

  10. Java反射学习四

    利用反射调用私有方法.访问私有属性 利用反射,首先是Class对象的获取,之后是Method和Field对象的获取. 以Method为例,从文档中可以看到: getMethod()方法返回的是publ ...