题目大意:

对n个排成一排的物品涂色,有m种颜色可选。

要求相邻的物品颜色不相同,且总共恰好有K种颜色,问所有可行的方案数

分析:

从m种颜色中选出k种,有c(m,k)种方法,那么我们只用考虑 k种颜色的涂法即可

显然第一个物品有k种涂法,后面的因为不能跟前面的相同都只有k-1种涂法

因此容易想到一个公式:k*(k-1)^(n-1)

但是这个公式算的是 不超过k种颜色的涂法,题目要求必须k种,怎么办呢?

先考虑一个简化版的问题:

用而且用完5种颜色涂不相关的五个物品的方案数

用阶乘的方法可以算出 ans=120,换一种思路呢想一想这个问题,容易想到

ans(取五种颜色)=5^5(取不大于5种颜色)-c(5,4)*4^5(取不大于4种颜色)

可是一算发现ans竟然小于0了,这是怎么回事呢?容易发现其实取小于四种颜色的方案被减重复了

于是想到需要容斥

ans=c(5,5)*5^5-c(5,4)*4^5+c(5,3)*3^5-c(5,2)*2^5+c(5,1)*1^5 =120

这个问题解决了。原问题也就差不多了。。

代码:

#include <iostream>
#include <stdio.h>
#include<string.h>
#include<algorithm>
#include<string>
#include<ctype.h>
using namespace std;
const long long mod=;
const long long ny=;
long long n,m,k;
long long cm[];
long long cn[];
long long ck[];
long long inv[];
long long mo(long long x)
{
while(x<)
x+=mod;
return x%mod;
}
long long exgcd(long long a,long long b,long long &x,long long &y)
{
if(a==&&b==) return -;
if(b==){x=;y=;return a;}
long long d=exgcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
long long Inv(long long a,long long n)
{
long long x,y;
long long d=exgcd(a,n,x,y);
if(d==) return (x%n+n)%n;
else return -;
}
long long quickmod(long long a,long long b,long long m) //a^b%m
{
long long res=;
while(b)
{
if(b&)
res=res*a%mod;
b>>=;
a=a*a%mod;
}
return res;
}
void ini()
{
cn[]=cm[]=;
memset(cm,,sizeof(cm));
cm[]=;
int tmp=min(m/,k);
for(int i=;i<=tmp;i++)
{
cm[i]=(cm[i-]*(m+-i)%mod*inv[i])%mod;
}
if(cm[k]==)
cm[k]=cm[m-k];
ck[]=ck[k]=;
for(int i=;i<=k/;i++)
{
ck[i]=(ck[i-]*(k+-i)%mod*inv[i])%mod;
ck[k-i]=ck[i];
}
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
inv[]=;
for(int i=;i<=;i++)
{
inv[i]=Inv(i,mod);
}
int t;
scanf("%d",&t);
int cas=;
while(t--)
{
cas++;
scanf("%I64d%I64d %I64d",&n,&m,&k);
ini();
long long ans=;
long long p=;
for(int i=k;i>=;i--)
{
ans=(ans+p*((ck[k-i])*i%mod*quickmod(i-,n-,mod)%mod)+mod)%mod;
p=-p;
}
ans=(ans*cm[k])%mod;
printf("Case #%d:%c%I64d\n",cas,' ',ans);
}
return ;
}

codeforces 100548F (西安现场赛F题):容斥原理的更多相关文章

  1. CF GYM100548 (相邻格子颜色不同的方案数 2014西安现场赛F题 容斥原理)

    n个格子排成一行,有m种颜色,问用恰好k种颜色进行染色,使得相邻格子颜色不同的方案数. integers n, m, k (1 ≤n, m ≤ 10^9, 1 ≤ k ≤ 10^6, k ≤ n, m ...

  2. 2014西安现场赛F题 UVALA 7040

    地址 题意:求在m种颜色中挑选k种颜色,给n个花朵涂色有几种方法. 分析:画图可以发现,基本的公式就是k ×(k-1)^(n-1).但这仅保证了相邻颜色不同,总颜色数不超过k种,并没有保证恰好出现k种 ...

  3. 华中邀请赛现场赛F题 Seats

    题目链接:http://acm.whu.edu.cn/land/problem/detail?problem_id=1552 解题报告:题目意思应该很清楚,就是有n个人,分别属于7个班级,然后他们坐成 ...

  4. 19秦皇岛现场赛F题 dfs

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6736 如果环的边长为k,那么环的删边方案数是2k-1.如果链的边长为k,那么链的删边方案数是2k.环的 ...

  5. 2013杭州现场赛B题-Rabbit Kingdom

    杭州现场赛的题.BFS+DFS #include <iostream> #include<cstdio> #include<cstring> #define inf ...

  6. 2013年山东省赛F题 Mountain Subsequences

    2013年山东省赛F题 Mountain Subsequences先说n^2做法,从第1个,(假设当前是第i个)到第i-1个位置上哪些比第i位的小,那也就意味着a[i]可以接在它后面,f1[i]表示从 ...

  7. ACM-ICPC 2019南昌网络赛F题 Megumi With String

    ACM-ICPC 南昌网络赛F题 Megumi With String 题目描述 给一个长度为\(l\)的字符串\(S\),和关于\(x\)的\(k\)次多项式\(G[x]\).当一个字符串\(str ...

  8. Gym101981D - 2018ACM-ICPC南京现场赛D题 Country Meow

    2018ACM-ICPC南京现场赛D题-Country Meow Problem D. Country Meow Input file: standard input Output file: sta ...

  9. HDU 4800/zoj 3735 Josephina and RPG 2013 长沙现场赛J题

    第一年参加现场赛,比赛的时候就A了这一道,基本全场都A的签到题竟然A不出来,结果题目重现的时候1A,好受打击 ORZ..... 题目链接:http://acm.hdu.edu.cn/showprobl ...

随机推荐

  1. [Javascript] What is JavaScript Function Currying?

    Currying is a core concept of functional programming and a useful tool for any developer's toolbelt. ...

  2. struts2,hibernate,spring整合笔记(1)

    今天终于配置好了ssh框架的整合,记录下过程供参考 环境:window8.1,jdk1.7 ,带有javaee的eclipse,也就是说要能发布web项目,TOMCAT服务器,tomcat配置涉及到环 ...

  3. maven第7章生命周期和插件

    maven插件用到哪些思想? 7.7 从命令行调用插件 目标前缀和插件前缀是一个意思. 在本地搭建maven环境,熟悉maven的环境.

  4. java里面的equals和hashcode的总结

    问题1: java比较两个对象,除了equals,为什么还要重写hashcode方法? 基本类型比较,用==就可以了. 对象比较,equals比较是对象的内存地址,hashcode比较的也是对象的内存 ...

  5. java反射机制(工厂模式)

    http://www.phpddt.com/dhtml/338.html java里面没有typeof,js有. 我终于实现了用反射机制编写的工厂模式.java反射在工厂模式可以体现. 包含产品接口类 ...

  6. 我对Backbone中url属性的理解

    Model中有一个url属性,而且有一个urlRoot属性. Collection中也有一个url属性. // 这是Model中的url方法 url: function() { var base = ...

  7. core java 第四章笔记

    import java.util.*; public class Employee { private static int nextid = 1; private String name; priv ...

  8. [转]Windows中的句柄(handle)

    1.句柄是什么?   在windows中,句柄是和对象一一对应的32位无符号整数值.对象可以映射到唯一的句柄,句柄也可以映射到唯一的对象.2.为什么我们需要句柄?   更准确地说,是windows需要 ...

  9. nuc950支持nand的mtd驱动的kernel修改

    支持nand的mtd驱动的kernel修改 一.更新nanddriver文件 将新的nanddriver文件nuc900_nand.c放到kernel的drivers/mtd/nand目录下 二.修改 ...

  10. 3.2 GUN as汇编(本文内容大部分引用原文,非原创)

    as86汇编仅仅用于编译内核中的boot/bootsect.s引导扇区程序和实模式下的设置程序boot/setup.s.内核中其余所有汇编语言程序(包括C语言产生的汇编程序)均使用gas来编译,并与C ...