FJ省队集训DAY4 T2


XXX

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
typedef unsigned long long ll;
ll a,mod=,L=;
ll tr[],b[],tmp[];
std::vector <ll> ans,ans2;
ll read(){
ll t=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-')f=-;ch=getchar();}
while (''<=ch&&ch<=''){t=t*+ch-'';ch=getchar();}
return t*f;
}
ll Mul(ll a,ll b){
if (mod<=)
return a*b%mod;
else
return b?((Mul(a,b>>)<<)+a*(b&))%mod:;
}
void Mul(ll *a,ll *b) {
static ll c[];
c[]=(Mul(a[],b[])+Mul(a[],b[]))%mod;
c[]=(Mul(a[],b[])+Mul(a[],b[]))%mod;
c[]=(Mul(a[],b[])+Mul(a[],b[]))%mod;
c[]=(Mul(a[],b[])+Mul(a[],b[]))%mod;
memcpy(a,c,sizeof c);
}
void init(ll *tr,ll L){
static ll tc[];
tc[]=; tc[]=; tc[]=; tc[]=;
tr[]=; tr[]=; tr[]=; tr[]=;
for (;L;L>>=,Mul(tc,tc))
if (L&) Mul(tr,tc);
}
int main(){
cin>>a;ans.push_back();mod=;L=;
for (int p=;p<=;p++){
mod*=;
init(tr,L);
init(b,);
ll L2=;
do{
for (int i=;i<ans.size();i++){
init(tmp,ans[i]+L2);
if (tmp[]==a%mod) ans2.push_back(ans[i]+L2);
}
L2+=L;
Mul(b,tr);
}while(b[]!=||b[]!=||b[]!=||b[]!=);
std::swap(ans,ans2);
ans2.clear();
L=L2;
}
if (ans.empty()) puts("-1");
std::cout<<ans[]<<std::endl;
}
FJ省队集训DAY4 T2的更多相关文章
- FJ省队集训DAY4 T3
#include<cstdio> #include<iostream> #include<cmath> #include<cstring> #inclu ...
- FJ省队集训DAY4 T1
直接上题解 #include<cstdio> #include<iostream> #include<cmath> #include<cstring> ...
- FJ省队集训DAY3 T2
思路:如果一个DAG要的路径上只要一条边去切掉,那么要怎么求?很容易就想到最小割,但是如果直接做最小割会走出重复的部分,那我们就这样:反向边设为inf,这样最小割的时候就不会割到了,判断无解我们直接用 ...
- FJ省队集训DAY2 T2
思路:我们可以考虑三角剖分,这样问题就变成考虑三角形的选取概率和三角形内有多少个点了. 先用树状数组预处理出三角剖分的三角形中有多少个点,然后用线段树维护,先用原点极角排序,然后枚举i,再以i极角排序 ...
- FJ省队集训最终测试 T2
思路:发现如果一个人一共选了x个点,那么选中某一个点对的概率都是一样的,一个人选x个点的总方案是C(n,x),一个人选中某个点对的总方案是C(n-2,x-2),这样,那么选中某个点对的概率就是 x*( ...
- FJ省队集训DAY3 T1
思路:我们考虑如果取掉一个部分,那么能影响到最优解的只有离它最近的那两个部分. 因此我们考虑堆维护最小的部分,离散化离散掉区间,然后用线段树维护区间有没有雪,最后用平衡树在线段的左右端点上面维护最小的 ...
- FJ省队集训DAY2 T1
思路:转换成n条三维空间的直线,求最大的集合使得两两有交点. 有两种情况:第一种是以某2条直线为平面,这时候只要统计这个平面上有几条斜率不同的直线就可以了 还有一种是全部交于同一点,这个也只要判断就可 ...
- FJ省队集训DAY1 T1
题意:有一堆兔子,还有一个r为半径的圆,要求找到最大集合满足这个集合里的兔子两两连边的直线不经过圆. 思路:发现如果有两个点之间连边不经过圆,那么他们到圆的切线会构成一段区间,那么这两个点的区间一定会 ...
- FJ省队集训最终测试 T3
思路:状态压缩dp,f[i][j[[k]代表i行j列这个格子,连续的状态为k,这个连续的状态是什么?就是下图 X格子代表我当前走到的地方,而这里的状态就是红色部分,也就是连续的一段n的状态,我们是分每 ...
随机推荐
- LibCurl编程手册以及代码实例
1. LibCurl编程流程 在基于LibCurl的程序里,主要采用callback function (回调函数)的形式完成传输任务,用户在启动传输前设置好各类参数和回调函数,当满足条件时libcu ...
- cocos2d-x 找不到资源文件问题
问题描述: 在项目中引用到了图片,但是运行时报错: Unhandled exception at 0x001049DE in hello.exe: 0xC0000005: Access violati ...
- arrayPointer
1,分别使用指针加减 int wages[2] = {100000000,20000000}; int *pw = wages or int *pw = &wages[0] 表示指针指向数组的 ...
- MySQL查看数据库、表的占用空间大小
SELECT TABLE_NAME,DATA_LENGTH+INDEX_LENGTH,TABLE_ROWS FROM information_schema.tables WHERE TABLE_SCH ...
- 最牛逼的的shell命令
参考 远程diff [root@jiangyi01.sqa.zmf /home/ahao.mah/ALIOS_QA/tools/iperf] #ssh ahao.mah@dnstest02.tbc c ...
- [转]Android Volley完全解析(四),带你从源码的角度理解Volley
转载请注明出处:http://blog.csdn.net/guolin_blog/article/details/17656437 经过前三篇文章的学习,Volley的用法我们已经掌握的差不多了,但是 ...
- DS18B20
DS18B20驱动 [ 2012-5-14 12:01:00 | By: 吴师傅 ] 14 推荐 一.概述 DS18B20是一种单总线数字温度传感器.測试温度范围-55℃-125℃,温度数据位可配 ...
- 使用zTree控件制作的表格形式的树形+数据菜单
測试了一下,兼容ie7以上, chrome opera ff 不使用对方css /*------------------------------------- zTree Style version: ...
- Java设计模式——Observer(观察者)模式
在多个对象之间建立一对多的关系,以便当一个对象状态改变的时候.其它全部依赖于这个对象的对象都能得到通知,并被自己主动更新. 适用情况: 当一个抽象模型有两个方面,当中一个方面依赖于还有一方面. 将这二 ...
- java 位运算权限管控(转载)
这里笔者介绍一种很常用,也比较专业的权限控制思路.这里用java语言描述,其实都差不多的.要换成其他的语言主,自己转一下就可以了.为了方便起见,我们这里定义a^b为:a的b次方.这里,我们为每一个操作 ...