Spark Core源代码分析: Spark任务模型
概述
一个Spark的Job分为多个stage,最后一个stage会包含一个或多个ResultTask,前面的stages会包含一个或多个ShuffleMapTasks。
ResultTask运行并将结果返回给driver application。
ShuffleMapTask将task的output依据task的partition分离到多个buckets里。一个ShuffleMapTask相应一个ShuffleDependency的partition,而总partition数同并行度、reduce数目是一致的。
Task
Task的代码在scheduler package下。
抽象类Task构造參数例如以下:
private[spark] abstract class Task[T](val stageId: Int, var partitionId: Int) extends Serializable
Task相应一个stageId和partitionId。
提供runTask()接口、kill()接口等。
提供killed变量、TaskMetrics变量、TaskContext变量等。
除了上述基本接口和变量,Task的伴生对象提供了序列化和反序列化应用依赖的jar包的方法。原因是Task须要保证工作节点具备本次Task须要的其它依赖,注冊到SparkContext下,所以提供了把依赖转成流写入写出的方法。
Task的两种实现
ShuffleMapTask
ShuffleMapTask构造參数例如以下,
private[spark] class ShuffleMapTask(
stageId: Int,
var rdd: RDD[_],
var dep: ShuffleDependency[_,_],
_partitionId: Int,
@transient private var locs: Seq[TaskLocation])
extends Task[MapStatus](stageId, _partitionId)
RDD partitioner相应的是ShuffleDependency。
ShuffleMapTask复写了MapStatus向外读写的方法,由于向外读写的内容包含:stageId,rdd,dep,partitionId,epoch和split(某个partition)。对于当中的stageId,rdd,dep有统一的序列化和反序列化操作并会cache在内存里,再放到ObjectOutput里写出去。序列化操作使用的是Gzip,序列化信息会维护在serializedInfoCache = newHashMap[Int,
Array[Byte]]。这部分须要序列化并保存的原因是:stageId,rdd,dep真正代表了本次Shuffle Task的信息,为了减轻master节点负担,把这部分序列化结果cache了起来。
Stage运行逻辑
主要过程例如以下:
val ser = Serializer.getSerializer(dep.serializer)
shuffle = shuffleBlockManager.forMapTask(dep.shuffleId, partitionId, numOutputSplits, ser)
这一步是初始化一个ShuffleWriterGroup,Group里面是一个BlockObjectWriter数组。
for (elem <- rdd.iterator(split, context)) {
val pair = elem.asInstanceOf[Product2[Any, Any]]
val bucketId = dep.partitioner.getPartition(pair._1)
shuffle.writers(bucketId).write(pair)
}
这一步是为每一个Writer相应一个bucket,调用每一个BlockObjectWriter的write()方法写数据
var totalBytes = 0L
var totalTime = 0L
val compressedSizes: Array[Byte] =
shuffle.writers.map { writer: BlockObjectWriter =>
writer.commit()
writer.close()
val size = writer.fileSegment().length
totalBytes += size
totalTime += writer.timeWriting()
MapOutputTracker.compressSize(size)
}
这一步是运行writer.commit(),并得到结果file segment大小,对总大小压缩
val shuffleMetrics = new ShuffleWriteMetrics
shuffleMetrics.shuffleBytesWritten = totalBytes
shuffleMetrics.shuffleWriteTime = totalTime
metrics.get.shuffleWriteMetrics = Some(shuffleMetrics) success = true
new MapStatus(blockManager.blockManagerId, compressedSizes)
这一步是记录metrcis信息,最后返回一个MapStatus类,里面是本地ShuffleMapTask结果的相关信息。
最后会release writers,让相应的shuffle文件得到记录和重用(ShuffleBlockManager管理这些file,这些file是Shuffle Task中一组Writer写的对象)。
主要把下图看懂。
重要类
介绍涉及到的重要外部类,帮助理解。
ShuffleBlockManager
总体梳理:
ShuffleState维护了两个ShuffleFileGroup的ConcurrentLinkedQueue,以记录眼下shuffle的state。
ShuffleState记录了一次shuffle操作的文件组状态,在ShuffleBlockManager内用Map为每一个shuffleId维护了一个ShuffleState。
每一个shuffleId通过forMapTask()方法得到一组writer,即ShuflleWriterGroup。这组里的writers共享一个shuffleId和mapId,可是每一个相应不同的bucketId和file。在为writer分配FileGroup的时候,会从shuffleId相应的shuffle state里先取unusedFileGroup,假设不存在,则在HDFS上新建File。
对于HDFS上的目标file,writer是能够append写的。在新建file的时候,是依据shuffleId和bucket number和一个递增的fileId来创建新的文件的。
ShuffleFileGroup的重用files和记录mapId,index,offset这块似懂非懂。
重要方法:
def forMapTask(shuffleId: Int, mapId: Int, numBuckets: Int, serializer: Serializer) = { new ShuffleWriterGroup {} }
该方法被一个ShuffleMapTask调用,传入了这次shuffle操作的id,mapId是partitionId。Buckects数目等于分区数目。该方法返回的ShuffleWriterGroup里面是一组DiskBlockObjectWriter,每个writer都属于这一次shuffle操作,所以他们有共同的shuffleId,mapId,可是他们相应了不同的bucket,而且各自相应一个file。
在shuffle run里的调用和參数传入:
val ser = Serializer.getSerializer(dep.serializer)
shuffle = shuffleBlockManager.forMapTask(dep.shuffleId, partitionId, numOutputSplits, ser)
shuffleId是由ShuffleDependency获得的全局唯一id,代表本次shuffle任务id
mapId等于partitionId
Bucket数目等于分区数目
产生writers:
Writer类型是DiskBlockObjectWriter,数目等于buckets数目。bufferSize的设置:
conf.getInt("spark.shuffle.file.buffer.kb", 100) * 1024
blockId产生自:
blockId = ShuffleBlockId(shuffleId, mapId, bucketId)
在生成writer的时候调用的是BlockManager的getDiskWriter方法,ShuffleBlockManager初始化的时候绑定BlockManager。
private[spark] class DiskBlockObjectWriter(
blockId: BlockId,
file: File,
serializer: Serializer,
bufferSize: Int,
compressStream: OutputStream => OutputStream,
syncWrites: Boolean)
extends BlockObjectWriter(blockId)
ShuffleFileGroup:私有内部类,相应了一组shuffle files,每一个file相应一个reducer。一个Mapper会分到一个ShuffleFileGroup,把mapper的结果写到这组File里去。
MapStatus
注意到ShuffleMapTask的类型是MapStatus类。MapStatus类是ShuffleMapTask要返回给scheduler的运行结果,包含两个东西:
class MapStatus(var location: BlockManagerId, var compressedSizes: Array[Byte])
前者是run这次task的block manager地址(BlockManagerId是一个类,保存了executorId,host, port, nettyPort),后者是output大小,该值会传给接下来的reduce任务。该size是被MapOutputTracker压缩过的。
MapStatus类提供了两个方法例如以下,ShuffleMapTask进行了复写。
def writeExternal(out: ObjectOutput) {
location.writeExternal(out)
out.writeInt(compressedSizes.length)
out.write(compressedSizes)
}
def readExternal(in: ObjectInput) {
location = BlockManagerId(in)
compressedSizes = new Array[Byte](in.readInt())
in.readFully(compressedSizes)
}
BlockManagerId
BlockManagerId类构造依赖executorId, host, port, nettyPort这些信息。伴生对象维护了一个blockManagerIdCache ,实现为ConcurrentHashMap[BlockManagerId,BlockManagerId]() 。
比方MapStatus的readExternal方法把ObjectInput传入BlockManagerId构造函数的时候,BlockManagerId的apply()方法就会依据ObjectInput取出executorId, host, port,nettyPort信息,把这个BlockManagerIdobj维护到blockManagerIdCache内
ResultTask
构造參数
private[spark] class ResultTask[T, U](
stageId: Int,
var rdd: RDD[T],
var func: (TaskContext, Iterator[T]) => U,
_partitionId: Int,
@transient locs: Seq[TaskLocation],
var outputId: Int)
extends Task[U](stageId, _partitionId) with Externalizable {
ResultTask比較简单,runTask方法调用的是rdd的迭代器:
override def runTask(context: TaskContext): U = {
metrics = Some(context.taskMetrics)
try {
func(context, rdd.iterator(split, context))
} finally {
context.executeOnCompleteCallbacks()
}
}
进程模型 vs. 线程模型
Spark同节点上的任务以多线程的方式执行在一个JVM进程中。
长处:
启动任务快
共享内存,适合内存密集型任务
Executor所占资源可反复利用
缺点:
同节点上的全部任务执行在一个进程中,会出现严重的资源争用,难以细粒度控制每一个任务的占用资源。MapReduce为Map Task和Reduce Task设置不同资源,细粒度控制任务占用资源量。
MapReduce的每一个Task都是一个JVM进程,都要经历:资源申请->执行任务->释放资源的过程
每一个节点能够有一个或多个Executor,Executor配有一定数量slots,Executor内能够跑多个Result Task和ShuffleMap Task。
在共享内存方面,broadcast的变量会在每一个executor里存一份,这个executor内的任务能够共享。
Spark Core源代码分析: Spark任务模型的更多相关文章
- Spark Core源代码分析: Spark任务运行模型
DAGScheduler 面向stage的调度层,为job生成以stage组成的DAG,提交TaskSet给TaskScheduler运行. 每个Stage内,都是独立的tasks,他们共同运行同一个 ...
- Spark Core源代码分析: RDD基础
RDD RDD初始參数:上下文和一组依赖 abstract class RDD[T: ClassTag]( @transient private var sc: SparkContext, @tran ...
- Spark SQL 源代码分析之 In-Memory Columnar Storage 之 in-memory query
/** Spark SQL源代码分析系列文章*/ 前面讲到了Spark SQL In-Memory Columnar Storage的存储结构是基于列存储的. 那么基于以上存储结构,我们查询cache ...
- Spark SQL 源代码分析系列
从决定写Spark SQL文章的源代码分析,到现在一个月的时间,一个又一个几乎相同的结束很快,在这里也做了一个综合指数,方便阅读,下面是读取顺序 :) 第一章 Spark SQL源代码分析之核心流程 ...
- Spark SQL源代码分析之核心流程
/** Spark SQL源代码分析系列文章*/ 自从去年Spark Submit 2013 Michael Armbrust分享了他的Catalyst,到至今1年多了,Spark SQL的贡献者从几 ...
- Spark SQL 源代码分析之Physical Plan 到 RDD的详细实现
/** Spark SQL源代码分析系列文章*/ 接上一篇文章Spark SQL Catalyst源代码分析之Physical Plan.本文将介绍Physical Plan的toRDD的详细实现细节 ...
- Spark Core Runtime分析: DAGScheduler, TaskScheduler, SchedulerBackend
Spark Runtime里的主要层次分析,梳理Runtime组件和运行流程, DAGScheduler Job=多个stage,Stage=多个同种task, Task分为ShuffleMapTas ...
- 【Spark Core】任务运行机制和Task源代码浅析1
引言 上一小节<TaskScheduler源代码与任务提交原理浅析2>介绍了Driver側将Stage进行划分.依据Executor闲置情况分发任务,终于通过DriverActor向exe ...
- Spark SQL Catalyst源代码分析之TreeNode Library
/** Spark SQL源代码分析系列文章*/ 前几篇文章介绍了Spark SQL的Catalyst的核心执行流程.SqlParser,和Analyzer,本来打算直接写Optimizer的,可是发 ...
随机推荐
- 10003 Cutting Sticks(区间dp)
Cutting Sticks You have to cut a wood stick into pieces. The most affordable company, The Analog ...
- hdu1867之KMP
A + B for you again Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- C#静态方法
C#静态方法 学习C#静态函数及变量的一个精典例子与代码 (1)用于对静态字段.只读字段等的初始化. (2)添加static关键字,不能添加访问修饰符,因为静态构造函数都是私有的. (3)类的 ...
- Ext JS学习第八天 Ext基础之 认识Ext.js 和Ext-more.js
此文来记录学习笔记: •认识Ext.js 和Ext-more.js •首先,我们要知道这2个js文件的作用,这俩个文件包含了Ext的一些基础定义.基本的属性和方法,我们要重点学习和深入底层代码进行研究 ...
- 简单JSONP跨域请求
JSONP原理:利用<script>标签的src属性实现跨域的请求.可在URL中提供回调函数的名字.后台进过处理后将数据以回调函数参数的形式返回. demo:JSONP请求不同端口的数据 ...
- MyEclipse中spring MVC的配置
---恢复内容开始--- web.xml配置: <?xml version="1.0" encoding="UTF-8"?> <web-app ...
- 转:FileReader详解与实例---读取并显示图像文件
~~~针对需要读取本地图像,并立即显示在浏览器的情况,由于chrome firefox出于安全限制,input file并不返回文件的真实路径,经测试IE6/7/8都会返回真实路径,所以chrome, ...
- ACM 中常用的算法有哪些?
在网上看到别人ACM学习的心得,转载过来,源地址不记得了,当时是百度的.内容如下: 网络上流传的答案有很多,估计提问者也曾经去网上搜过.所以根据自己微薄的经验提点看法. 我ACM初期是训练编码能力,以 ...
- 警告:‘xxxx’ 将随后被初始化
关于编译报警告.本次是接手一个新手的代码,总共不到1K行的代码.两个类.编译的时候报的警告,本来也不打算管理这个事情的.要求也不会有那么严格.但上午看完代码后,觉得毕竟是新手写的代码,还是有很多需要修 ...
- Pick-up sticks(判断两直线相交)
Pick-up sticks Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 11335 Accepted: 4250 D ...