Dark roads

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 7   Accepted Submission(s) : 2
Problem Description
Economic times these days are tough, even in Byteland. To reduce the operating costs, the government of Byteland has decided to optimize the road lighting. Till now every road was illuminated all night long, which costs 1 Bytelandian Dollar per meter and day. To save money, they decided to no longer illuminate every road, but to switch off the road lighting of some streets. To make sure that the inhabitants of Byteland still feel safe, they want to optimize the lighting in such a way, that after darkening some streets at night, there will still be at least one illuminated path from every junction in Byteland to every other junction.

What is the maximum daily amount of money the government of Byteland can save, without making their inhabitants feel unsafe?

 
Input
The input file contains several test cases. Each test case starts with two numbers m and n, the number of junctions in Byteland and the number of roads in Byteland, respectively. Input is terminated by m=n=0. Otherwise, 1 ≤ m ≤ 200000 and m-1 ≤ n ≤ 200000. Then follow n integer triples x, y, z specifying that there will be a bidirectional road between x and y with length z meters (0 ≤ x, y < m and x ≠ y). The graph specified by each test case is connected. The total length of all roads in each test case is less than 2[sup]31[/sup].
 
Output
For each test case print one line containing the maximum daily amount the government can save.
 
Sample Input
7 11 0 1 7 0 3 5 1 2 8 1 3 9 1 4 7 2 4 5 3 4 15 3 5 6 4 5 8 4 6 9 5 6 11 0 0
题解:就把总路径加起来,然后减去最小路径;刚开始用prime包内存;最后用kruscal竟然没超市
代码:
 #include<string.h>
#include<stdio.h>
#include<algorithm>
using namespace std;
const int MAXN=;
struct Node{
int s,e,dis;
};
Node dt[MAXN];
int cmp(Node a,Node b){
return a.dis<b.dis;
}
int pre[MAXN],mi,tot;
int find(int x){
int r=x;
while(r!=pre[r])r=pre[r];
int i=x,j;
while(i!=r)j=pre[i],pre[i]=r,i=j;
return r;
}
int merge(Node a){
int f1,f2;
if(pre[a.s]==-)pre[a.s]=a.s;
if(pre[a.e]==-)pre[a.e]=a.e;
f1=find(a.s);f2=find(a.e);
if(f1!=f2)pre[f1]=f2,mi+=a.dis;
}
int main(){
int N,M;
while(~scanf("%d%d",&N,&M),N||M){mi=tot=;
memset(pre,-,sizeof(pre));
for(int i=;i<M;i++)scanf("%d%d%d",&dt[i].s,&dt[i].e,&dt[i].dis),tot+=dt[i].dis;
sort(dt,dt+M,cmp);
for(int i=;i<M;i++){
merge(dt[i]);
}
//printf("%d %d \n",tot,mi);
printf("%d\n",tot-mi);
}
return ;
}

Dark roads(kruskal)的更多相关文章

  1. HDU 2988 Dark roads(kruskal模板题)

    Dark roads Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  2. c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树

    c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树 最小生成树(Minimum Cost Spanning Tree)的概念: 假设要在n个城市之间建立公路,则连通n个城市只需要n-1条线路 ...

  3. 最小生成树之克鲁斯卡尔(Kruskal)算法

    学习最小生成树算法之前我们先来了解下 下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的 ...

  4. 克鲁斯卡尔(Kruskal)算法

    概览 相比于普里姆算法(Prim算法),克鲁斯卡尔算法直接以边为目标去构建最小生成树.从按权值由小到大排好序的边集合{E}中逐个寻找权值最小的边来构建最小生成树,只要构建时,不会形成环路即可保证当边集 ...

  5. POJ 1251 Jungle Roads (prim)

    D - Jungle Roads Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Su ...

  6. 最小生成树练习2(Kruskal)

    两个BUG鸣翠柳,一行代码上西天... hdu4786 Fibonacci Tree(生成树)问能否用白边和黑边构成一棵生成树,并且白边数量是斐波那契数. 题解:分别优先加入白边和黑边,求出生成树能包 ...

  7. 最小生成树(Kruskal)

    题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M<= ...

  8. WUSTOJ 1346: DARK SOULS(Java)并查集

    题目链接:1346: DARK SOULS 并查集系列:WUSTOJ 1319: 球(Java)并查集 Description CQ最近在玩一款游戏:DARK SOULS,这是一款以高难度闻名的硬派动 ...

  9. 这是一篇每个人都能读懂的最小生成树文章(Kruskal)

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是算法和数据结构专题的第19篇文章,我们一起来看看最小生成树. 我们先不讲算法的原理,也不讲一些七七八八的概念,因为对于初学者来说,看到 ...

随机推荐

  1. C#字典Dictionary排序(顺序、倒序)

    这里是针对.NET版本过低的排序方式,没怎么用过,记录一下: 一.创建字典Dictionary 对象 假如 Dictionary 中保存的是一个网站页面流量,key 是网页名称,值value对应的是网 ...

  2. 注意使用 BTREE 复合索引各字段的 ASC/DESC 以优化 order by 查询效率

    tbl_direct_pos_201506 表有 190 万数据.DDL: CREATE TABLE `tbl_direct_pos_201506` ( `acq_ins_code` char(13) ...

  3. Object-c 单例模式中的 allocWithZone作用

    最 近因为在ios应用开发中,考虑到一些公共方法的封装使用,就决定使用单例模式的写法了..不知道,Object-c中的单例模式的写法是否和java中的写法是否有所区别? 于是阿堂从网上一搜,发现“ O ...

  4. Hadoop CLI MiniCluster

    CLI MiniCluster Use the climonicluster, users can simply start and stop a single-node hadoop cluster ...

  5. and then set HOMEBREW_GITHUB_API_TOKEN.

    andyMacBook-Pro:~ andy$ brew search redis hiredis   redis homebrew/nginx/redis2-nginx-module Error: ...

  6. JAVA Socket地址绑定

    Socket常用有惨构造方法有如下: Socket(InetAddress address, int port) Socket(InetAddress address, int port, InetA ...

  7. C# AES,AesManaged使用学习

    加密 static byte[] EncryptBytes_Aes(byte[] plainText, byte[] Key, byte[] IV) { // Check arguments. ) t ...

  8. RadioButton、CheckBox与ToggleButton

    1.RadioButton RadioButton被称作为单选框,通常都是以组的形式出现,可以在一组控件中选择一个. RadioButton的使用首先需要加入<RadioGroup/>,在 ...

  9. JS判断表单内容是否更改过

    1,根据具体标签判断 function JudgesubmitForm() { var judjeWs = false; var judjeAt = false; var judjeWd = fals ...

  10. C语言strcmp()函数:比较字符串(区分大小写)

    头文件:#include <string.h> strcmp() 用来比较字符串(区分大小写),其原型为: int strcmp(const char *s1, const char *s ...