Dark roads

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 7   Accepted Submission(s) : 2
Problem Description
Economic times these days are tough, even in Byteland. To reduce the operating costs, the government of Byteland has decided to optimize the road lighting. Till now every road was illuminated all night long, which costs 1 Bytelandian Dollar per meter and day. To save money, they decided to no longer illuminate every road, but to switch off the road lighting of some streets. To make sure that the inhabitants of Byteland still feel safe, they want to optimize the lighting in such a way, that after darkening some streets at night, there will still be at least one illuminated path from every junction in Byteland to every other junction.

What is the maximum daily amount of money the government of Byteland can save, without making their inhabitants feel unsafe?

 
Input
The input file contains several test cases. Each test case starts with two numbers m and n, the number of junctions in Byteland and the number of roads in Byteland, respectively. Input is terminated by m=n=0. Otherwise, 1 ≤ m ≤ 200000 and m-1 ≤ n ≤ 200000. Then follow n integer triples x, y, z specifying that there will be a bidirectional road between x and y with length z meters (0 ≤ x, y < m and x ≠ y). The graph specified by each test case is connected. The total length of all roads in each test case is less than 2[sup]31[/sup].
 
Output
For each test case print one line containing the maximum daily amount the government can save.
 
Sample Input
7 11 0 1 7 0 3 5 1 2 8 1 3 9 1 4 7 2 4 5 3 4 15 3 5 6 4 5 8 4 6 9 5 6 11 0 0
题解:就把总路径加起来,然后减去最小路径;刚开始用prime包内存;最后用kruscal竟然没超市
代码:
 #include<string.h>
#include<stdio.h>
#include<algorithm>
using namespace std;
const int MAXN=;
struct Node{
int s,e,dis;
};
Node dt[MAXN];
int cmp(Node a,Node b){
return a.dis<b.dis;
}
int pre[MAXN],mi,tot;
int find(int x){
int r=x;
while(r!=pre[r])r=pre[r];
int i=x,j;
while(i!=r)j=pre[i],pre[i]=r,i=j;
return r;
}
int merge(Node a){
int f1,f2;
if(pre[a.s]==-)pre[a.s]=a.s;
if(pre[a.e]==-)pre[a.e]=a.e;
f1=find(a.s);f2=find(a.e);
if(f1!=f2)pre[f1]=f2,mi+=a.dis;
}
int main(){
int N,M;
while(~scanf("%d%d",&N,&M),N||M){mi=tot=;
memset(pre,-,sizeof(pre));
for(int i=;i<M;i++)scanf("%d%d%d",&dt[i].s,&dt[i].e,&dt[i].dis),tot+=dt[i].dis;
sort(dt,dt+M,cmp);
for(int i=;i<M;i++){
merge(dt[i]);
}
//printf("%d %d \n",tot,mi);
printf("%d\n",tot-mi);
}
return ;
}

Dark roads(kruskal)的更多相关文章

  1. HDU 2988 Dark roads(kruskal模板题)

    Dark roads Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  2. c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树

    c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树 最小生成树(Minimum Cost Spanning Tree)的概念: 假设要在n个城市之间建立公路,则连通n个城市只需要n-1条线路 ...

  3. 最小生成树之克鲁斯卡尔(Kruskal)算法

    学习最小生成树算法之前我们先来了解下 下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的 ...

  4. 克鲁斯卡尔(Kruskal)算法

    概览 相比于普里姆算法(Prim算法),克鲁斯卡尔算法直接以边为目标去构建最小生成树.从按权值由小到大排好序的边集合{E}中逐个寻找权值最小的边来构建最小生成树,只要构建时,不会形成环路即可保证当边集 ...

  5. POJ 1251 Jungle Roads (prim)

    D - Jungle Roads Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Su ...

  6. 最小生成树练习2(Kruskal)

    两个BUG鸣翠柳,一行代码上西天... hdu4786 Fibonacci Tree(生成树)问能否用白边和黑边构成一棵生成树,并且白边数量是斐波那契数. 题解:分别优先加入白边和黑边,求出生成树能包 ...

  7. 最小生成树(Kruskal)

    题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M<= ...

  8. WUSTOJ 1346: DARK SOULS(Java)并查集

    题目链接:1346: DARK SOULS 并查集系列:WUSTOJ 1319: 球(Java)并查集 Description CQ最近在玩一款游戏:DARK SOULS,这是一款以高难度闻名的硬派动 ...

  9. 这是一篇每个人都能读懂的最小生成树文章(Kruskal)

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是算法和数据结构专题的第19篇文章,我们一起来看看最小生成树. 我们先不讲算法的原理,也不讲一些七七八八的概念,因为对于初学者来说,看到 ...

随机推荐

  1. NEC红外遥控协议理解与实现

    红外发射管有2个管脚,发送的是经过38KHz时钟调制过的信号.例如下图使用PWM产生一个等占空时钟信号用于调制. 接收管收下来的信号已经经过了解调,可以直接连接系统的外部中断脚. 下面通过逻辑分析仪来 ...

  2. 【HDU 4771 Stealing Harry Potter's Precious】BFS+状压

    2013杭州区域赛现场赛二水... 类似“胜利大逃亡”的搜索问题,有若干个宝藏分布在不同位置,问从起点遍历过所有k个宝藏的最短时间. 思路就是,从起点出发,搜索到最近的一个宝藏,然后以这个位置为起点, ...

  3. 【男性身材计算】胸围=身高*0.48(如:身高175cm的标准胸围=175cm*0.61=84cm);腰围=身高*0.47(如:身高175c… - 李峥 - 价值中国网

    [男性身材计算]胸围=身高*0.48(如:身高175cm的标准胸围=175cm*0.61=84cm):腰围=身高*0.47(如:身高175c- - 李峥 - 价值中国网 李峥:[男性身材计算]胸围=身 ...

  4. Lining Up(在一条直线上的最大点数目,暴力)

    Lining Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  5. Sumsets(3sum问题,枚举d,c二分a+b)

    Sumsets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9997   Accepted: 2736 Descripti ...

  6. Sqlparameter防SQL注入

    一.SQL注入的原因 随着B/S模式应用开发的发展,使用这种模式编写应用程序的程序员也越来越多.但是由于这个行业的入门门槛不高,程序员的水平及经验也参差不齐,相当大一部分程序员在编写代码的时候,没有对 ...

  7. OpenCV-Python教程(10、直方图均衡化)

    相比C++而言,Python适合做原型.本系列的文章介绍如何在Python中用OpenCV图形库,以及与C++调用相应OpenCV函数的不同之处.这篇文章介绍在Python中使用OpenCV和NumP ...

  8. H264源码分析(二)

    原文出自http://blog.csdn.net/xfding/article/details/5476763(转载收集) (四)图像参数集语义 pic_parameter_set_rbsp( ) { ...

  9. 步步学LINQ to SQL:使用LINQ检索数据【转】

    [IT168 专稿]该系列教程描述了如何采用手动的方式映射你的对象类到数据表(而不是使用象SqlMetal这样的自动化工具)以便能够支持数据表之间的M:M关系和使用实体类的数据绑定.即使你选择使用了自 ...

  10. 通过P-SMR看State Machine Replication

    在一个复制系统中,为了保持一致性,各个replicated server是串行运行.这样性能上就会比仅仅有一台server的系统慢,由于仅仅有一台server能够进行并行处理.假设在复制系统中各个se ...