[HNOI2008]玩具装箱toy(dp+斜率优化)
斜率优化问题一般都是决策单调问题。对于这题能够证明单调决策。
令sum[i]=sigma(c [k] ) 1<=k<=i , f[i]=sum[i]+i , c=L+1;
首先我们能够写出转移方程 dp[i] = min( dp[j] + (f[i]-f[j]-c)^2 ) 。令决策j1<j2。若决策j2更优有
dp[j2]+(f[i]-f[j2]-c)^2<=dp[j1]+(f[i]-f[j1]-c)^2
能够得带 ((dp[j2]+f[j2]^2)-(dp[j1]+f[j1]^2) )/(f[j2]-f[j1])<2*(f[i]-c)。
优于f[i]是递增的,所以对于t>i的点。决策j2总是比j1更优。那么j1实际上能够从决策集合中删除。后面的就能够用一个队列维护了。
<span style="font-size:14px;">#include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#include <string>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int inf = 0x3fffffff;
const int mmax =50010;
LL C[mmax];
LL L,c;
LL sum[mmax],f[mmax],dp[mmax];
LL sqr(LL x)
{
return x*x;
}
double G(int x)
{
return 1.0*f[x]*f[x]+dp[x];
}
double S(int x)
{
return 2.0*f[x];
}
void calc(int i,int j)
{
dp[i]=dp[j]+sqr(f[i]-f[j]-c);
}
int Q[mmax];
int main()
{
int n;
while(cin>>n>>L)
{
c=L+1;
sum[0]=0;
f[0]=0;
for(int i=1;i<=n;i++)
{
scanf("%lld",&C[i]);
sum[i]=sum[i-1]+C[i];
f[i]=sum[i]+i;
}
int head=0,tail=-1;
dp[0]=0;
Q[++tail]=0;
for(int i=1;i<=n;i++)
{
while(head<tail)
{
double tmp=1.0*(G(Q[head+1])-G(Q[head]))/(S(Q[head+1])-S(Q[head]));
if(tmp<=f[i]-c)
head++;
else
break;
}
calc(i,Q[head]);
while(head<tail)
{
double tmp1=1.0*(G(Q[tail])-G(Q[tail-1]))/(S(Q[tail])-S(Q[tail-1]));
double tmp2=1.0*(G(i)-G(Q[tail]))/(S(i)-S(Q[tail]));
if(tmp1>=tmp2)
tail--;
else
break;
}
Q[++tail]=i;
} printf("%lld\n",dp[n]); }
return 0;
}
</span>
[HNOI2008]玩具装箱toy(dp+斜率优化)的更多相关文章
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- [HNOI2008]玩具装箱TOY --- DP + 斜率优化 / 决策单调性
[HNOI2008]玩具装箱TOY 题目描述: P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京. 他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器 ...
- 1010: [HNOI2008]玩具装箱toy [dp][斜率优化]
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- BZOJ1010: [HNOI2008]玩具装箱toy(dp+斜率优化)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 12451 Solved: 5407[Submit][Status][Discuss] Descript ...
- BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)
题目链接 斜率优化 不说了 网上很多 这的比较详细->Click Here or Here //1700kb 60ms #include<cstdio> #include<cc ...
- P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)
P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
- 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9330 Solved: 3739 Descriptio ...
- 1010: [HNOI2008]玩具装箱toy(斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 12280 Solved: 5277[Submit][S ...
- [HNOI2008]玩具装箱toy(斜率优化dp)
前言 这是我写的第一道$dp$斜率优化的题目,$dp$一直都很菜,而且咖啡鸡都说了这是基础的东西,然而看别人对$dp$斜率优化一大堆公式又看不懂就老老实实做几道题目,这个比较实在 描述 给出$n$和$ ...
随机推荐
- 1357:车厢调度(train)
[题目描述] 有一个火车站,铁路如图所示,每辆火车从A驶入,再从B方向驶出,同时它的车厢可以重新组合.假设从A方向驶来的火车有n节(n≤1000),分别按照顺序编号为1,2,3,…,n.假定在进入车站 ...
- 分布式缓存DistributedCache的使用
分布式缓存用于将使用的小文件首先分发到各个datanode节点上,然后利用map/reduce阶段的setup()方法将文件内容读入内存,加快程序执行.具体实现方法如下: http://demievi ...
- matlab和c混合编程
参考: http://blog.sciencenet.cn/blog-620659-579885.html http://baike.baidu.com/link?url=HnHd3lU9mcVXwh ...
- yum出现的“UnicodeDecodeError: 'ascii' codec”问题解决
新装了CentOS 6.5系统,打算使用yum安装程序是出现了如下错误: Loading mirror speeds from cached hostfile Traceback (most rece ...
- Android App升级Intent
点击“更新检查”,自动下载最新版本安装包,然后开始安装,进入安装界面后很快闪退. 在这两天的适配中,发现这样一个问题,即:在升级覆盖安装软件时,程序能进入安装的界面,但会很快闪退.经过多次尝试,终于找 ...
- EF4.4 升级EF6.0问题总结
如出现下面代码错误,基本可能确定EF数据库配置错误 在 System.Data.Entity.Core.Metadata.Edm.MetadataArtifactLoaderCompositeReso ...
- Pressed状态和clickable,duplicateParentState的关系
做Android开发的人都用过Selector,可以方便的实现View在不同状态下的背景.不过,相信大部分开发者遇到过和我一样的问题,本文会从源码角度,解释这些问题. 首先,这里简单描述一下,我遇到的 ...
- 重新学习vue基础
1.创建vue实例 var vm = new Vue({ el: '#example', //选择元素 data: {a:1} //基本数据 }) 2.模板语法 (一)基本语法 <span> ...
- [Android 4.4.4] 泛泰A850 三版通刷 Mokee4.4.4 KTU84P 20140626 RC2.2 by syhost
RC2.1版地址: http://blog.csdn.net/syhost/article/details/34051923 2014.06.26 RC2.2 更新内容: 1 修复相机录像无声的bug ...
- 原型设计工具——Axure
1,百度百科 http://baike.baidu.com/view/3332366.htm?from_id=5056136&type=syn&fromtitle=axure& ...