题意:求仙人掌图直径。

算法:建出仙人掌圆方树,对于圆点直接做普通的树上DP(忽略方点儿子),方点做环上DP并将值直接赋给父亲。

建图时有一个很好的性质,就是一个方点在邻接表里的点的顺序正好就是从环的根开始的整个环的点的顺序,所以可以直接DP。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
using namespace std; const int N=,inf=;
int n,m,tot,tim,top,u,v;
int dfn[N],low[N],stk[N],f[N][],S[N][]; struct E{
int cnt,h[N],nxt[N<<],to[N<<];
void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; }
}G,G1; void Tarjan(int x,int pre){
dfn[x]=low[x]=++tim; stk[++top]=x;
for (int i=G.h[x],k; i; i=G.nxt[i])
if ((k=G.to[i])!=pre){
if (!dfn[k]){
Tarjan(k,x); low[x]=min(low[x],low[k]);
if (low[k]>dfn[x]) top--,G1.add(x,k);
else if (low[k]==dfn[x]){
tot++; int t;
do{ t=stk[top--]; G1.add(tot,t); } while (t!=k);
G1.add(x,tot); G1.add(tot,x);
}
}
else low[x]=min(low[x],dfn[k]);
}
} void dfs(int x,int fa){ printf("%d\n",x); for (int i=G1.h[x],k; i; i=G1.nxt[i]) if (G1.to[i]!=fa) dfs(G1.to[i],x); } void DP(int x,int fa){
//printf("%d\n",x);
if (x<=n){
f[x][]=; f[x][]=;
for (int i=G1.h[x],k; i; i=G1.nxt[i]){
DP(k=G1.to[i],x);
if (k<=n) f[x][]+=max(f[k][],f[k][]),f[x][]+=f[k][];
}
}else{
for (int i=G1.h[x]; i; i=G1.nxt[i]) if (G1.to[i]!=fa) DP(G1.to[i],x); int top=;
for (int i=G1.h[x],k; i; i=G1.nxt[i])
S[++top][]=f[k=G1.to[i]][],S[top][]=f[k][];
for (int i=top-; i; i--)
S[i][]+=max(S[i+][],S[i+][]),S[i][]+=S[i+][];
f[fa][]=S[][]; top=;
for (int i=G1.h[x],k; i; i=G1.nxt[i])
S[++top][]=f[k=G1.to[i]][],S[top][]=f[k][];
S[top][]=-inf;
for (int i=top-; i; i--)
S[i][]+=max(S[i+][],S[i+][]),S[i][]+=S[i+][];
f[fa][]=S[][];
}
} int main(){
freopen("bzoj4316.in","r",stdin);
freopen("bzoj4316.out","w",stdout);
scanf("%d%d",&n,&m); tot=n;
rep(i,,m) scanf("%d%d",&u,&v),G.add(u,v),G.add(v,u);
Tarjan(,); DP(,); //dfs(1,0);
//rep(i,1,tot) printf("%d %d\n",f[i][0],f[i][1]); puts("");
printf("%d\n",max(f[][],f[][]));
return ;
}

[BZOJ4316]小C的独立集(圆方树DP)的更多相关文章

  1. [BZOJ2125]最短路(圆方树DP)

    题意:仙人掌图最短路. 算法:圆方树DP,$O(n\log n+Q\log n)$ 首先建出仙人掌圆方树(与点双圆方树的区别在于直接连割边,也就是存在圆圆边),然后考虑点u-v的最短路径,显然就是:在 ...

  2. BZOJ1023:[SHOI2008]cactus仙人掌图(圆方树,DP,单调队列)

    Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus). 所谓简单回路就是指在图上不重复经过任何一个顶点 ...

  3. [BZOJ5463][APIO2018]铁人两项(圆方树DP)

    题意:给出一张图,求满足存在一条从u到v的长度大于3的简单路径的有序点对(u,v)个数. 做了上一题[HDU5739]Fantasia(点双连通分量+DP),这个题就是一个NOIP题了. 一开始考虑了 ...

  4. [HDU5739]Fantasia(圆方树DP)

    题意:给一张无向点带有权无向图.定义连通图的权值为图中各点权的乘积,图的权值为其包含的各连通图的权和.设z_i为删除i点后图的权值,求$S = (\sum\limits_{i=1}^{n}i\cdot ...

  5. 洛谷4630APIO2018铁人两项(圆方树+dp)

    QWQ神仙题啊(据说是今年第一次出现圆方树的地方) 首先根据题目,我们就是求对于每一个路径\((s,t)\)他的贡献就是两个点之间的点数,但是图上问题我并没有办法很好的解决... 这时候考虑圆方树,我 ...

  6. bzoj4316小C的独立集(dfs树/仙人掌+DP)

    本题有两种写法,dfs树上DP和仙人掌DP. 先考虑dfs树DP. 什么是dfs树?其实是对于一棵仙人掌,dfs后形成生成树,找出非树边(即返祖边),然后dfs后每条返祖边+其所覆盖的链构成了一个环( ...

  7. 2019.02.07 bzoj4316: 小C的独立集(仙人掌+树形dp)

    传送门 题意:给出一个仙人掌森林求其最大独立集. 思路:如果没有环可以用经典的树形dpdpdp解决. fi,0/1f_{i,0/1}fi,0/1​表示第iii个点不选/选的最大独立集. 然后fi,0+ ...

  8. 图论杂项细节梳理&模板(虚树,圆方树,仙人掌,欧拉路径,还有。。。)

    orzYCB 虚树 %自为风月马前卒巨佬% 用于优化一类树形DP问题. 当状态转移只和树中的某些关键点有关的时候,我们把这些点和它们两两之间的LCA弄出来,以点的祖孙关系连成一棵新的树,这就是虚树. ...

  9. 仙人掌 && 圆方树 && 虚树 总结

    仙人掌 && 圆方树 && 虚树 总结 Part1 仙人掌 定义 仙人掌是满足以下两个限制的图: 图完全联通. 不存在一条边处在两个环中. 其中第二个限制让仙人掌的题做 ...

随机推荐

  1. C&C++——extern

    1.C 调用C++的函数或变量 C 调用C++的函数或变量,在C++的头文件声明为extern "C" ,C调用的时候只使用extern 声明. 可见,extern "C ...

  2. Light OJ 1074:Extended Traffic(spfa判负环)

    Extended Traffic 题目链接:https://vjudge.net/problem/LightOJ-1074 Description: Dhaka city is getting cro ...

  3. Different Integers 牛客多校第一场只会签到题

    Given a sequence of integers a1, a2, ..., an and q pairs of integers (l1, r1), (l2, r2), ..., (lq, r ...

  4. HTML5 视频直播

    目前视频直播,尤其是移动端的视频直播已经火到不行了,基本上各大互联网公司都有了自己的直播产品,所以对于直播的一些基本知识和主要技术点也要有所了解,本次分享就向大家介绍一下其中的奥秘. 内容大体框架:  ...

  5. Centos系统修改hostname

    1.用命令临时修改 hostname oier 这样,服务器的hostname就变成oier了,但是重启之后会变回去 2.编辑配置文件永久修改 vi /etc/sysconfig/network HO ...

  6. Jquery 获取checkbox的checked问题以及解决方案

    转载自:http://www.cnblogs.com/-run/archive/2011/11/16/2251250.html 这个郁闷了,今天写这个功能的时候发现了问题,上网找了好多资料对照,更加纠 ...

  7. JS知识总结

    1.javascript继承机制 原型继承,访问对象属性时,如果对象内部有就返回,找不到就会从对象原型指向的对象原型中查找,一层一层的查找,直到最顶层的对象原型还找不到,就返回undefined. 2 ...

  8. TCP(二)

    TCP半连接和全连接问题 TCP握手过程详解 如上图所示,关键部分:syns queue(半连接队列)和accept queue(全连接队列) 正常情况下的处理过程如下: 1)当server端收到cl ...

  9. [ZOJ2341]Reactor Cooling解题报告|带上下界的网络流|无源汇的可行流

    Reactor Cooling The terrorist group leaded by a well known international terrorist Ben Bladen is bul ...

  10. 【洛谷 P4168】[Violet]蒲公英(分块)

    题目链接 题目大意:给定\(n\)个数和\(m\)个求区间众数的询问,强制在线 这题我\(debug\)了整整一个下午啊..-_- 从14:30~16:45终于\(debug\)出来了,\(debug ...