【题解】ZOJ1420 Cashier Employment
论文——冯威《浅析差分约束系统》。
论文讲得很详细,就不解释了。主要想记录一下对于差分约束的理解(感觉以前的学习真的是在囫囵吞枣啊……)
差分约束系统,同于解决线性的不等关系是否存在合法解 & 求得最大 / 最小解。当其中牵涉到的式子形如 \(A[i] - A[i - 1] >= (<=) x\) 时,就可以运用差分约束求解了。处理的方法是由于这个式子为三角形不等式,即spfa中的松弛操作,所以我们看做一个图论的问题,跑最长路 \ 最短路即可。连边的方式自己画图感知就好了。
当需要求解最大 / 最小值时:最大值运用最短路,最小值运用最长路。以求最大值为例:一个数能够取得的最大值即在满足了最小的约束情况下可以取得的最大值,而道路边权即为约束边,所以为最短路。
通用解法:1.罗列出不等关系(注意要找全了)。2.移项,未知数一边,常数一边。3.考虑运用最长路 / 最短路求解。这题主要在于构建出方程与函数来描述不等关系的特征,当常数中有未知项时,可以考虑枚举求解(其实这个思想很重要,数据范围小的时候一定考虑枚举暴力呀)。当然这题由于满足单调性,所以二分一下~
#include <bits/stdc++.h>
using namespace std;
#define maxn 300000
int cnp = , head[maxn], num[maxn];
int R[maxn], dis[maxn], in[maxn];
bool vis[maxn]; struct edge
{
int to, last, co;
}E[maxn]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void add(int u, int v, int w)
{
E[cnp].to = v, E[cnp].co = w;
E[cnp].last = head[u], head[u] = cnp ++;
} bool spfa()
{
queue <int> q;
for(int i = ; i <= ; i ++)
dis[i] = -;
memset(vis, , sizeof(vis));
memset(in, , sizeof(in));
dis[] = , q.push();
while(!q.empty())
{
int u = q.front(); q.pop();
vis[u] = ;
for(int i = head[u]; i; i = E[i].last)
{
int v = E[i].to;
if(dis[v] < dis[u] + E[i].co)
{
dis[v] = dis[u] + E[i].co;
if(!vis[v])
{
if(++ in[v] == ) return ;
vis[v] = ; q.push(v);
}
}
}
}
return ;
} void Build(int mid)
{
memset(head, , sizeof(head)); cnp = ;
for(int i = ; i <= ; i ++)
{
add(i - , i, );
add(i, i - , -num[i]);
}
for(int i = ; i <= ; i ++)
add(i - , i, R[i]);
for(int i = ; i < ; i ++)
add(i + , i, R[i] - mid);
add(, , mid);
} int main()
{
int T = read();
while(T --)
{
for(int i = ; i <= ; i ++) R[i] = read();
int n = read();
memset(num, , sizeof(num));
for(int i = ; i <= n; i ++)
{
int x = read();
num[x + ] ++;
}
Build(n);
if(spfa())
{
printf("No Solution\n");
continue;
}
int l = , r = n, ans;
while(l <= r)
{
int mid = (l + r) >> ;
Build(mid);
if(spfa()) l = mid + ;
else ans = mid, r = mid - ;
}
printf("%d\n", ans);
}
return ;
}
【题解】ZOJ1420 Cashier Employment的更多相关文章
- 【POJ1275】Cashier Employment 差分约束
[POJ1275]Cashier Employment 题意: 超市经历已经提供一天里每一小时需要出纳员的最少数量————R(0),R(1),...,R(23).R(0)表示从午夜到凌晨1:00所需要 ...
- POJ1275 Cashier Employment[差分约束系统 || 单纯形法]
Cashier Employment Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7997 Accepted: 305 ...
- 图论(差分约束系统):POJ 1275 Cashier Employment
Cashier Employment Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7651 Accepted: 288 ...
- hdu 1529 Cashier Employment(差分约束)
Cashier Employment Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- 【POJ 1275】 Cashier Employment(差分约束系统的建立和求解)
[POJ 1275] Cashier Employment(差分约束系统的建立和求解) Cashier Employment Time Limit: 1000MS Memory Limit: 10 ...
- [HDU 1529]Cashier Employment(差分约束系统)
[HDU 1529]Cashier Employment(差分约束系统) 题面 有一个超市,在24小时对员工都有一定需求量,表示为\(r_i\),意思为在i这个时间至少要有i个员工,现在有n个员工来应 ...
- POJ1275/ZOJ1420/HDU1529 Cashier Employment (差分约束)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud 题意:一商店二十四小时营业,但每个时间段需求的出纳员不同,现有n个人申请这份工作, ...
- POJ 1275 Cashier Employment(差分约束)
http://poj.org/problem?id=1275 题意 : 一家24小时营业的超市,要雇出纳员,需要求出超市每天不同时段需要的出纳员数,午夜只需一小批,下午需要多些,希望雇最少的人,给出每 ...
- POJ1275 Cashier Employment 【二分 + 差分约束】
题目链接 POJ1275 题解 显然可以差分约束 我们记\(W[i]\)为\(i\)时刻可以开始工作的人数 令\(s[i]\)为前\(i\)个时刻开始工作的人数的前缀和 每个时刻的要求\(r[i]\) ...
随机推荐
- less学习三---父选择器
引用父选择器需要用到“&”符号 &运算符表示嵌套规则的父选择器,并且在修改类或伪类选择器的应用中非常普遍 ul{ li{ &:nth-child(2) a { color: r ...
- php GD 圆图 -处理成圆图片
<?php /** * 处理成圆图片,如果图片不是正方形就取最小边的圆半径,从左边开始剪切成圆形 * @param string $imgpath [description] * @return ...
- 怎么用Python Flask模板jinja2在网页上打印显示16进制数?
问题:Python列表(或者字典等)数据本身是10进制,现在需要以16进制输出显示在网页上 解决: Python Flask框架中 模板jinja2的If 表达式和过滤器 假设我有一个字典index, ...
- discuzX3.2 X3.4网站漏洞修复 SQL注入与请求伪造攻击利用与修复
2018年12月9日,国内某安全组织,对discuz X3.2 X3.4版本的漏洞进行了公开,这次漏洞影响范围较大,具体漏洞是discuz 的用户前段SQL注入与请求伪造漏洞,也俗称SSRF漏洞,漏洞 ...
- 【Leetcode】709. To Lower Case
To Lower Case Description Implement function ToLowerCase() that has a string parameter str, and retu ...
- WRITE
WRITE - int_format_options 基本形式 ... [LEFT-JUSTIFIED|CENTERED|RIGHT-JUSTIFIED] [NO-GAP] ...
- 纯js生成QRCode
纯js,不依赖jquery,非常好用,废话不多说,直接上代码! <!DOCTYPE html> <html> <head> <meta charset=&qu ...
- 零基础学习Vim编辑器
**********************************************************************0.这篇教程的简介:Vim是Linux/Unix下的经典编辑 ...
- Java与C++进行系统间交互:Protocol Buffer
在一次项目中,因笔者负责的java端应用需要与公司C++系统进行交互,公司选定Protocol Buffer方案,故简单的了解一下 有需要的可以看一下其他作者的文章,了解一下Protobuf: htt ...
- (2)分布式下的爬虫Scrapy应该如何做-关于对Scrapy的反思和核心对象的介绍
本篇主要介绍对于一个爬虫框架的思考和,核心部件的介绍,以及常规的思考方法: 一,猜想 我们说的爬虫,一般至少要包含几个基本要素: 1.请求发送对象(sender,对于request的封装,防止被封) ...