题目描述

给出一棵树,点有点权。支持两种操作:修改一个点的点权,查询链上mex。

输入

第一行包括两个整数n,m,代表树上的结点数(标号为1~n)和操作数。
第二行包括n个整数a1...an,代表每个结点的食材初始的美味度。
接下来n-1行,每行包括两个整数u,v,代表树上的一条边。
接下来m行,每行包括三个整数
0 u x 代表将结点u的食材的美味度修改为 x。
1 u v 代表询问以u,v 为端点的链的mex值。

输出

对于每次询问,输出该链的mex值。

样例输入

10 10
1 0 1 0 2 4 4 0 1 0
1 2
2 3
2 4
2 5
1 6
6 7
2 8
3 9
9 10
0 7 14
1 6 6
0 4 9
1 2 2
1 1 8
1 8 3
0 10 9
1 3 5
0 10 0
0 7 7

样例输出

0
1
2
2
3


题解

带修改树上莫队+分块

本题如果在链上并且不带修改的话就是 mex / Rmq Problem ,可以使用莫队算法+分块实现。

那么如果带单点修改并出到树上,则需要莫队算法的 带修改进化版+树上进化版 。带修改树上莫队的具体方法可以参考 糖果公园

于是直接树分块,按照左端点所在块、右端点所在块、时间(询问之前的修改次数)排序,暴力移动三个指针即可。显然大于n的权值可以看成n,于是对权值分块,对每个块维护块内有多少数出现过。查询时先查询块在找块内。

时间复杂度$O(n^{\frac 53})$

#include <cstdio>
#include <algorithm>
#define N 50010
using namespace std;
const int si = 2000 , sq = 200;
int a[N] , head[N] , to[N << 1] , next[N << 1] , cnt , fa[N][17] , deep[N] , log[N] , tot , sta[N] , top , bl[N] , num;
int cp[N] , ca[N] , cb[N] , vis[N] , buc[N] , sum[310] , ans[N];
struct data
{
int u , v , t , id;
bool operator<(const data &a)const {return bl[u] == bl[a.u] ? bl[v] == bl[a.v] ? t < a.t : bl[v] < bl[a.v] : bl[u] < bl[a.u];}
}q[N];
inline void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x)
{
int i , now = top;
for(i = 1 ; (1 << i) <= deep[x] ; i ++ ) fa[x][i] = fa[fa[x][i - 1]][i - 1];
for(i = head[x] ; i ; i = next[i])
{
if(to[i] != fa[x][0])
{
fa[to[i]][0] = x , deep[to[i]] = deep[x] + 1 , dfs(to[i]);
if(top - now >= si)
{
num ++ ;
while(top != now) bl[sta[top -- ]] = num;
}
}
}
sta[++top] = x;
}
inline int lca(int x , int y)
{
int i;
if(deep[x] < deep[y]) swap(x , y);
for(i = log[deep[x] - deep[y]] ; ~i ; i -- )
if((1 << i) <= deep[x] - deep[y])
x = fa[x][i];
if(x == y) return x;
for(i = log[deep[x]] ; ~i ; i -- )
if((1 << i) <= deep[x] && fa[x][i] != fa[y][i])
x = fa[x][i] , y = fa[y][i];
return fa[x][0];
}
inline void ins(int x)
{
sum[x / sq] += !buc[x] , buc[x] ++ ;
}
inline void del(int x)
{
buc[x] -- , sum[x / sq] -= !buc[x];
}
inline void rev(int x)
{
if(!vis[x]) ins(a[x]);
else del(a[x]);
vis[x] ^= 1;
}
int main()
{
int n , m , i , j , opt , x , y , un = 1 , vn = 1 , cn = 0;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]) , a[i] = min(a[i] , n);
for(i = 2 ; i <= n ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x) , log[i] = log[i >> 1] + 1;
dfs(1);
while(top) bl[sta[top -- ]] = num;
for(i = 1 ; i <= m ; i ++ )
{
scanf("%d%d%d" , &opt , &x , &y);
if(opt) q[i - cn].u = x , q[i - cn].v = y , q[i - cn].t = cn , q[i - cn].id = i - cn;
else y = min(y , n) , cp[++cn] = x , ca[cn] = a[x] , cb[cn] = a[x] = y;
}
m -= cn , sort(q + 1 , q + m + 1);
for(i = 1 ; i <= m ; i ++ )
{
x = lca(un , q[i].u);
for(j = un ; j != x ; j = fa[j][0]) rev(j);
for(j = q[i].u ; j != x ; j = fa[j][0]) rev(j);
un = q[i].u;
x = lca(vn , q[i].v);
for(j = vn ; j != x ; j = fa[j][0]) rev(j);
for(j = q[i].v ; j != x ; j = fa[j][0]) rev(j);
vn = q[i].v;
while(cn < q[i].t)
{
cn ++ , a[cp[cn]] = cb[cn];
if(vis[cp[cn]]) del(ca[cn]) , ins(cb[cn]);
}
while(cn > q[i].t)
{
if(vis[cp[cn]]) del(cb[cn]) , ins(ca[cn]);
a[cp[cn]] = ca[cn] , cn --;
}
x = lca(un , vn) , rev(x);
for(j = 0 ; sum[j] == sq ; j ++ );
for(j *= sq ; buc[j] ; j ++ );
ans[q[i].id] = j , rev(x);
}
for(i = 1 ; i <= m ; i ++ ) printf("%d\n" , ans[i]);
return 0;
}

【bzoj4129】Haruna’s Breakfast 带修改树上莫队+分块的更多相关文章

  1. 【bzoj3052】[wc2013]糖果公园 带修改树上莫队

    题目描述 给出一棵n个点的树,每个点有一个点权,点权范围为1~m.支持两种操作:(1)修改一个点的点权 (2)对于一条路径,求$\sum\limits_{i=1}^m\sum\limits_{j=1} ...

  2. BZOJ 4129: Haruna’s Breakfast [树上莫队 分块]

    传送门 题意: 单点修改,求一条链的mex 分块维护权值,$O(1)$修改$O(S)$求mex...... 带修改树上莫队 #include <iostream> #include < ...

  3. UOJ 58 (树上带修改的莫队)

    UOJ 58 糖果公园 Problem : 给一棵n个点的树,每个点上有一种颜色,对于一条路径上的点,若 i 颜色第 j 次出现对该路径权值的贡献为 w[i] * c[j], 每次询问一条路径的权值, ...

  4. BZOJ 2120: 数颜色 带修改的莫队算法 树状数组套主席树

    https://www.lydsy.com/JudgeOnline/problem.php?id=2120 标题里是两种不同的解法. 带修改的莫队和普通莫队比多了个修改操作,影响不大,但是注意一下细节 ...

  5. 【BZOJ】2120: 数颜色 带修改的莫队算法

    [题意]给定n个数字,m次操作,每次询问区间不同数字的个数,或修改某个位置的数字.n,m<=10^4,ai<=10^6. [算法]带修改的莫队算法 [题解]对于询问(x,y,t),其中t是 ...

  6. P1903 [国家集训队]数颜色 / 维护队列 带修改的莫队

    \(\color{#0066ff}{ 题目描述 }\) 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1. Q L R代表询问你从第L支 ...

  7. UVA - 12345 带修改的莫队

    题意显然:给出初始序列,单点修改,区间查询元素的种类. 由于时限过宽,暴力可过. 比较优秀的解法应该是莫队. 带修改的莫队题解可以看https://www.luogu.org/blog/user126 ...

  8. codeforces 940F 带修改的莫队

    F. Machine Learning time limit per test 4 seconds memory limit per test 512 megabytes input standard ...

  9. Machine Learning CodeForces - 940F(带修改的莫队)

    题解原文地址:https://www.cnblogs.com/lujiaju6555/p/8468709.html 给数组a,有两种操作,1 l r查询[l,r]中每个数出现次数的mex,注意是出现次 ...

随机推荐

  1. yaml文件 .yml

    YAML文件简介 我们可能在spring配置文件里见到过.yml格式的东东,配置文件不都是.propertie或者.xml文件吗?.yml是什么鬼,今天我带你们来一探究竟. YAML(Yet Anot ...

  2. iWebShop产品功能技术优势有什么?

    iwebshop基于iweb si 框架开发,在获得iweb si 技术平台支持的条件下,iwebshop可以轻松满足用户量级百万至千万级的大型电子商务网站的性能要求.站点的集群与分布式技术(分布式计 ...

  3. Oracle数据库之 PL SQL 学习笔记

    1.定义基本变量: 2.引用型的变量: set serveroutput on   declare pename emp.ename%type; psal emp.sal%type;   begin ...

  4. Java应用:经纬度匹配(geohash加密)

    本文采用http://gc.ditu.aliyun.com地址进行经纬度匹配,无数量限制 如果给定经纬度进行geohash加密操作,先解密得到相应gps坐标,具体程序如下所示: import java ...

  5. Oozie 配合 sqoop hive 实现数据分析输出到 mysql

    文件/RDBMS -> flume/sqoop -> HDFS -> Hive -> HDFS -> Sqoop -> RDBMS 其中,本文实现了 使用 sqoo ...

  6. P1016 旅行家的预算

    P1016 旅行家的预算 题目描述 一个旅行家想驾驶汽车以最少的费用从一个城市到另一个城市(假设出发时油箱是空的).给定两个城市之间的距离D1.汽车油箱的容量C(以升为单位).每升汽油能行驶的距离D2 ...

  7. 线程池ThreadPoolExecutor使用

    一.简介 线程池类为 java.util.concurrent.ThreadPoolExecutor,常用构造方法为: ThreadPoolExecutor(int corePoolSize, int ...

  8. PRO*C 函数事例 3 -- 游标使用

    1.Oracle中的游标    Oracle使用两种游标: 显式游标和隐式游标. 不管语句返回多少条记录, Oracle为每条使用的SQL语句隐式地定义一个游标. Oracle为每个DELETE , ...

  9. 程序在Linux下前后台切换

    程序在Linux下前后台切换 一.为什么要使程序在后台执行 背景:SecureCRT远程连接到linux主机,使程序在后台运行有以下好处: (1)本机关机不影响linux主机运行 (2)不影响计算效率 ...

  10. asp.net webapi 使用小结

    一星期前公司用webapi处理一些事情,自己总结一下用法. 1.创建一个空的webapi会默认有一下几个方法. public class ValueController : ApiController ...