【题解】CQOI2007余数求和
大家都说这题水然而我好像还是调了有一会儿……不过暴力真的很良心,裸的暴力竟然还有60分。
打一张表出来,就会发现数据好像哪里有规律的样子,再仔细看一看,就会发现k/3~k/2为公差为2的等差数列,k/2~之后为公差为1的等差数列,于是我们就可以利用高斯求和快速求解啦。自认为代码是能够看得的...
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define int long long
LL ans;
int p, x = , n, m, k, base, skipper; LL Get_sum()//高斯求和,从p项开始公差为x
{
int y = x - ;
int base = (k % p);
int end = max(base % y, base - (m - p) * y);
skipper = ((base - end) / y) + ;
return ((LL)(base + end) * (LL)skipper) >> ;
} void init()//分段设x值
{
if(k > ) x = ;
else if(k > ) x = ;
else if(k > ) x = ;
else if(k > ) x = ;
else x = ;
} signed main()
{
scanf("%lld%lld", &n, &k);
m = min(n, k);
init();
for(p = ; p <= m; p ++)
{
if(p == (k / x) + )
{
ans += Get_sum();
p += (skipper - );//统计加了多少项
x -= ;
}
else ans += (k % p);
}
if(n > k) ans += (LL) (n - k) * (LL) (k);
printf("%lld", ans);
return ;
}
【题解】CQOI2007余数求和的更多相关文章
- [题解] [CQOI2007] 余数求和
题面 题解 考虑到这个等式\(a\bmod b = a - b * \lfloor\frac{a}{b}\rfloor\) 所以我们可以得到: \[ \begin{aligned} ans & ...
- 题解 P2261【[CQOI2007]余数求和】
P2261[[CQOI2007]余数求和] 蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了 虽然还看了一下自己之前的博客 题目要求: \[\sum_{i=1}^{n}{k \bmod i} \ ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- [Luogu 2261] CQOI2007 余数求和
[Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- [Luogu P2261] [CQOI2007]余数求和 (取模计算)
题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...
- P2261 [CQOI2007]余数求和 【整除分块】
一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$ ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
随机推荐
- Oracle数据库远程访问
如果需要访问非本机的Oracle数据库,首先需要安装一个Oracle的客户端,我直接安装的服务器版本的Oracle,也自带客户端. 安装完成后,如果访问本机的服务器的话,直接就可以访问,无需配置, 如 ...
- ElasticSearch 安装配置
1. Elasticsearch5.5.2安装 1.1.Elasticsearch安装步骤 #安装之前需安装java 环境,并配置JAVA_HOME环境变量 #直接下载Elasticsearch- ...
- AB PLC 编程之状态机
AB的程序设计和西门子有点PLC不大一样,在AB中没有RS指令,所以主要用move指令来作步进.今天我们就用Move指令写个AB的程序,和西门子比,有哪些不同. 控制任务 很简单的一个状态机.初始步为 ...
- UVA - 12230
#include <bits/stdc++.h> using namespace std; int n; double d; double p,l,v,ret,sum; ; /* 村庄A, ...
- Javaweb——四则运算---18.11.01
---恢复内容开始--- test.jsp <%@ page language="java" contentType="text/html; charset=utf ...
- python,函数式编程
函数式编程: 特点:允许传递的参数是函数,且允许返回一个函数. 由于Python允许使用变量,因此,Python不是纯函数式编程语言,同样的输入可能输出不同,有副作用.纯函数式编程语言没有变量,输入和 ...
- WebService第一天——概述与入门操作
一.概述 1.是什么 Web service是一个平台独立的,低耦合的,自包含的.基于可编程的web的应用程序,可使用开放的XML(标准通用标记语言下的一个子集)标准来描述.发布.发现.协调和配置这些 ...
- Java中的IO流体系
Java为我们提供了多种多样的IO流,我们可以根据不同的功能及性能要求挑选合适的IO流,如图10-7所示,为Java中IO流类的体系. 注:这里只列出常用的类,详情可以参考JDK API文档.粗体标注 ...
- MyEclipse - 问题集 - Java compiler level does not match the version of the installed Java project facet
右键项目“Properties”,在弹出的“Properties”窗口左侧,单击“Project Facets”,打开“Project Facets”页面. 在页面中的“Java”下拉列表中,选择相应 ...
- SGU 101 Domino 题解
鉴于SGU题目难度较大,AC后便给出算法并发布博文,代码则写得较满意后再补上.——icedream61 题目简述:暂略 AC人数:3609(2015年7月20日) 算法: 这题就是一笔画,最多只有7个 ...