【题解】CQOI2007余数求和
大家都说这题水然而我好像还是调了有一会儿……不过暴力真的很良心,裸的暴力竟然还有60分。
打一张表出来,就会发现数据好像哪里有规律的样子,再仔细看一看,就会发现k/3~k/2为公差为2的等差数列,k/2~之后为公差为1的等差数列,于是我们就可以利用高斯求和快速求解啦。自认为代码是能够看得的...
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define int long long
LL ans;
int p, x = , n, m, k, base, skipper; LL Get_sum()//高斯求和,从p项开始公差为x
{
int y = x - ;
int base = (k % p);
int end = max(base % y, base - (m - p) * y);
skipper = ((base - end) / y) + ;
return ((LL)(base + end) * (LL)skipper) >> ;
} void init()//分段设x值
{
if(k > ) x = ;
else if(k > ) x = ;
else if(k > ) x = ;
else if(k > ) x = ;
else x = ;
} signed main()
{
scanf("%lld%lld", &n, &k);
m = min(n, k);
init();
for(p = ; p <= m; p ++)
{
if(p == (k / x) + )
{
ans += Get_sum();
p += (skipper - );//统计加了多少项
x -= ;
}
else ans += (k % p);
}
if(n > k) ans += (LL) (n - k) * (LL) (k);
printf("%lld", ans);
return ;
}
【题解】CQOI2007余数求和的更多相关文章
- [题解] [CQOI2007] 余数求和
题面 题解 考虑到这个等式\(a\bmod b = a - b * \lfloor\frac{a}{b}\rfloor\) 所以我们可以得到: \[ \begin{aligned} ans & ...
- 题解 P2261【[CQOI2007]余数求和】
P2261[[CQOI2007]余数求和] 蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了 虽然还看了一下自己之前的博客 题目要求: \[\sum_{i=1}^{n}{k \bmod i} \ ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- [Luogu 2261] CQOI2007 余数求和
[Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- [Luogu P2261] [CQOI2007]余数求和 (取模计算)
题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...
- P2261 [CQOI2007]余数求和 【整除分块】
一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$ ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
随机推荐
- PHP无法用下标访问
php数组分为普通数组和关联数组,普通数组可以用下标访问,而关联数组不可以.
- 进一步理解 frame 和 bounds
总结一下 iOS中 frame 和 bounds之间的区别 综述 frame和bounds都是描述一块矩形区域,但是他们是有区别的 frame:可视范围,可以理解为控件的大小,把控件当作边缘很薄 ...
- react native 踩坑之 SectionList state更新 不执行render重新渲染页面
官方文档中指出 SectionList 本组件继承自PureComponent而非通常的Component,这意味着如果其props在浅比较中是相等的,则不会重新渲染.所以请先检查你的renderIt ...
- 日志框架Log4j
log4j是一个用Java编写的可靠,快速和灵活的日志框架(API),它在Apache软件许可下发布.Log4j已经被移植到了C,C++,C#,Perl,Python和Ruby等语言中. Log4j是 ...
- 如何用Python做自动化特征工程
机器学习的模型训练越来越自动化,但特征工程还是一个漫长的手动过程,依赖于专业的领域知识,直觉和数据处理.而特征选取恰恰是机器学习重要的先期步骤,虽然不如模型训练那样能产生直接可用的结果.本文作者将使用 ...
- 一、Linux知识体系结构图
参考: https://blog.csdn.net/Swing_Liu/article/details/79202479
- C中 snprintf()函数的作用
函数原型:int snprintf(char* dest_str,size_t size,const char* format,...); 函数功能:先将可变参数 “…” 按照format的格式格式化 ...
- kafka集群部署文档(转载)
原文链接:http://www.cnblogs.com/luotianshuai/p/5206662.html Kafka初识 1.Kafka使用背景 在我们大量使用分布式数据库.分布式计算集群的时候 ...
- Eclipse报错:An internal error occurred during: "Building workspace". Java heap space),卡死解决办法
在项目工程的根目录下,找到.project,用记事本打开,把两处删除掉: 第一处: <buildCommand> <name>org.eclipse.wst.jsdt.core ...
- Windows下使用PHP Xdebug
首先下载Xdebug的dll:http://xdebug.org/download.php 将dll文件放到php目录下的ext目录里面: 修改php.ini,根据自己的需要增加信息: [Xdebug ...