poj2154(polya定理+欧拉函数)
题目链接:http://poj.org/problem?id=2154
题意:n 种颜色的珠子构成一个长为 n 的环,每种颜色珠子个数无限,也不一定要用上所有颜色,旋转可以得到状态只算一种,问有多少种不同的情况。
思路:polya 模板,不过数据比较大,需要用欧拉优化。
代码:
#include<iostream>
#include <stdlib.h>
#include <algorithm>
#include <stdio.h>
#include<vector>
using namespace std; const int MAXN = 1e5 + ;
int isprime[MAXN];
int prime[MAXN];
int num, n, p; void getprime(void){
num = ;
for(int i = ; i <= MAXN; i++)if(!isprime[i]){
prime[num++] = i;
for(int j = ; j * i <= MAXN; j++){
isprime[i * j] = ;
}
}
} int euler(int x){
int res = x;
for(int i = ; i < num && prime[i]*prime[i] <= x; i++){
if(x % prime[i] == ){
res = res / prime[i] * (prime[i] - );
while(x % prime[i] == ){
x /= prime[i];
}
}
}
if(x > ) res = res / x * (x - );
return res;
} int expmod(int a, int b, int mod){
int ret = ;
a = a % mod;
while(b > ){
if(b & )ret = (ret * a) % mod;
a = (a * a) % mod;
b >>= ;
}
return ret;
} int main(void){
int t;
getprime();
scanf("%d", &t);
while(t--){
scanf("%d%d", &n, &p);
int ans = , i;
for(i = ; i * i < n; i++)if(n % i == ){
ans = (ans + euler(i) % p * expmod(n, n / i - , p) + euler(n / i) % p * expmod(n, i - , p)) % p;; //这里的i-1代表已经除以整个置换数n了,原本是expmod(n,i),最后要除以n的,
}
if(i * i == n)
ans = (ans + euler(i) * expmod(n, i - , p)) % p;
cout << ans << endl;
}
return ;
}
poj2154(polya定理+欧拉函数)的更多相关文章
- 【poj2154】Color Polya定理+欧拉函数
题目描述 $T$ 组询问,用 $n$ 种颜色去染 $n$ 个点的环,旋转后相同视为同构.求不同构的环的个数模 $p$ 的结果. $T\le 3500,n\le 10^9,p\le 30000$ . 题 ...
- POJ2154 Color【 polya定理+欧拉函数优化】(三个例题)
由于这是第一天去实现polya题,所以由易到难,先来个铺垫题(假设读者是看过课件的,不然可能会对有些“显然”的地方会看不懂): 一:POJ1286 Necklace of Beads :有三种颜色,问 ...
- poj2154Color polya定理+欧拉函数优化
没想到贱贱的数据居然是错的..搞得我调了一中午+晚上一小时(哦不d飞LJH掉RP毕竟他是BUFF)结果重判就对了五次.. 回归正题,这题傻子都看得出是polya定理(如果你不是傻子就看这里),还没有翻 ...
- POJ2154 Color 【Polya定理 + 欧拉函数】
题目 Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). ...
- poj 2154 Color【polya定理+欧拉函数】
根据polya定理,答案应该是 \[ \frac{1}{n}\sum_{i=1}^{n}n^{gcd(i,n)} \] 但是这个显然不能直接求,因为n是1e9级别的,所以推一波式子: \[ \frac ...
- Luogu4980 【模板】Polya定理(Polya定理+欧拉函数)
对于置换0→i,1→i+1……,其中包含0的循环的元素个数显然是n/gcd(i,n),由对称性,循环节个数即为gcd(i,n). 那么要求的即为Σngcd(i,n)/n(i=0~n-1,也即1~n). ...
- poj2409 & 2154 polya计数+欧拉函数优化
这两个题都是项链珠子的染色问题 也是polya定理的最基本和最经典的应用之一 题目大意: 用m种颜色染n个珠子构成的项链,问最终形成的等价类有多少种 项链是一个环.通过旋转或者镜像对称都可以得到置换 ...
- 【hdu-2588】GCD(容斥定理+欧拉函数+GCD()原理)
GCD Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) Total Submissio ...
- poj 2154 Color(polya计数 + 欧拉函数优化)
http://poj.org/problem?id=2154 大致题意:由n个珠子,n种颜色,组成一个项链.要求不同的项链数目.旋转后一样的属于同一种.结果模p. n个珠子应该有n种旋转置换.每种置换 ...
随机推荐
- Halcon学习之边缘检测函数
sobel_amp ( Image : EdgeAmplitude : FilterType, Size : ) 根据图像的一次导数计算图像的边缘 close_edges ( Edges, EdgeI ...
- VS2010调用halcon的时候出现试图加载格式不正确的程序(this.hWindowControl1 = new HalconDotNet.HWindowControl();)
[重要错误修改] /// <summary> /// 设计器支持所需的方法 - 不要 /// 使用代码编辑器修改此方法的内容. /// </summary> private v ...
- bash shell笔记3 结构化命令二
原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://twentyfour.blog.51cto.com/945260/513601 三 ...
- Mac设置Root密码
[Mac设置Root密码] Mac系统重新设置root用户密码 如果不知道root用户密码,需要重设. 命令[sudo passwd root ] 然后提示你输入当前登录用户密码,通过以后, ...
- sql 在存储过程中使用事务(转)
本来想自己写一下,后来发现这个写的比我理解的要好,所以直接拽过来了,链接地址:https://www.cnblogs.com/RascallySnake/archive/2010/05/17/1737 ...
- python小程序:备份文件
设计程序,有以下步骤: 需要备份的文件和目录由一个列表指定. 备份应该保存在主备份目录中. 文件备份成一个zip文件. zip存档的名称是当前的日期和时间. 解决方案: 版本一: #!/usr/bin ...
- Gym - 101128C:Canvas Painting
这个就是哈夫曼树哇~ 我们仨英语太差了,跟榜时候才看出来是哈夫曼树雾 一个优先队列就可以搞定 #include <cstdio> #include <algorithm> #i ...
- mfs教程(一)
对于mfs文件系统也用了半年了,确实不错,最近又翻译了作者的三篇文章,再此一同发上,希望对大家有所帮助.不足之处还请指出,以便完善,谢谢! 感谢网友nonamexz做了精美的pdf文档 MFS文件系统 ...
- laravel 验证表单信息
1控制器验证 $this->validate($request,[ 'Student.name'=>'required|min:2|max:20', 'Student.age'=>' ...
- c# 如何制作RealPlayer 视频播放器
c# 如何制作RealPlayer 视频播放器 主要介绍了如何使用 RealPlayer G2 Control 控件 那么我们怎么获得到这个控件呢,很简单,操作方法如下 右单击工具箱对话框的[所有 ...