《瞿葩的数字游戏》T3-三角圣地(Lucas)
题目背景
国王1带大家到了数字王国的中心:三角圣地。
题目描述
不是说三角形是最稳定的图形嘛,数字王国的中心便是由一个倒三角构成。这个倒三角的顶端有一排数字,分别是1~N。1~N可以交换位置。之后的每一行的数字都是上一行相邻两个数字相加得到的。这样下来,最底端就是一个比较大的数字啦!数字王国称这个数字为“基”。国王1希望“基”越大越好,可是每次都自己去做加法太繁琐了,他希望你能帮他通过编程计算出这个数的最大值。但是这个值可能很大,所以请你输出它mod 10007 的结果。
任务:给定N,求三角形1~N的基的最大值 再去 mod 10007。
输入输出格式
输入格式:
一个整数N
输出格式:
一个整数,表示1~N构成的三角形的最大的“基”
思路:
其实这道题大家画个图就会发现,1~n个数在他们自己位置上的权值是杨辉三角形第n行
由于可以交换位置,所以将最大的放在中间即可
于是开始算了
一开始,我用的递推组合数直接求一行杨辉三角形
50分??
哦,1000000太大了,递推会出锅
好吧,Lucas来一发
还是50分??
好吧,TLE出锅了
怎么办呢?
看来只能预处理阶乘了。。。
心累。。
递推版:
#include<iostream>
#include<cstdio>
using namespace std;
long long n,m,p,t,ans[1000010],ny[1000010],out;
void qny()
{
ny[1]=1;
for(register int a=2;a<=n;a++)
{
ny[a]=(p-(p/a))*ny[p%a]%p;
}
}
int main()
{
scanf("%d",&n);
p=10007;
qny();
m=(n+1)/2;
ans[0]=1;
for(register int i=1;i<=m-1;i++)
{
ans[i]=ans[i-1]*(n-i)*ny[i]%p;
}
for(register int i=2;i<=n;i+=2)
{
long long ltt=i+i-1;
ltt%=p;
ltt*=ans[i/2-1];
ltt%=p;
out+=ltt;
out%=p;
}
if(n%2==1)
{
long long ltt=n*ans[m-1]%p;
out+=ltt;
out%=p;
}
cout<<out;
}
Lucas朴素版:
// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#define rii register int i
using namespace std;
unsigned long long n,m,p,t,ny[100010],out;
void qny()
{
ny[1]=1;
for(register int a=2;a<=p;a++)
{
ny[a]=(p-(p/a))*ny[p%a]%p;
}
}
int zhs(int q,int x)
{
if(q==0)
{
return 1;
}
long long ltt=1;
for(register int a=1;a<=q;a++)
{
ltt*=ny[a];
ltt%=p;
}
for(register int a=1;a<=q;a++)
{
ltt*=(x-a+1);
ltt%=p;
}
return ltt;
}
long long lucas(int s,int t)
{
if(t==0)
{
return 1;
}
else
{
return (lucas(s/p,t/p)*zhs(s%p,t%p))%p;
}
}
int main()
{
scanf("%d",&n);
p=10007;
qny();
for(rii=1;i<=n;i+=2)
{
if(i==n)
{
out+=lucas(i/2,n-1)*(i);
}
else
{
out+=lucas(i/2,n-1)*(i*2+1);
}
out%=p;
}
cout<<out;
}
正解:
#include<iostream>
#include<cstring>
#define rii register int i
using namespace std;
int p=10007;
long long jc[10010],ny[10010],n,ans;
void ycl()
{
jc[0]=1;
jc[1]=1;
ny[0]=1;
ny[1]=1;
for(rii=2;i<=p-1;i++)
{
jc[i]=jc[i-1]*i%p;
}
for(rii=2;i<=p-1;i++)
{
ny[i]=(p-p/i)*ny[p%i]%p;
}
for(rii=1;i<=p-1;i++)
{
ny[i]=ny[i-1]*ny[i]%p;
}
}
long long lucas(long long h,long long j)
{
if(h<j)
{
return 0;
}
if(h<p&&j<p)
{
return jc[h]*ny[j]%p*ny[h-j]%p;
}
return lucas(h/p,j/p)*lucas(h%p,j%p)%p;
}
int main()
{
ycl();
cin>>n;
for(rii=1;i<=n;i++)
{
if(i%2==0)
{
ans=(ans+(i*lucas(n-1,n-i/2))%p)%p;
if(ans<0)
{
ans+=p;
}
}
else
{
ans=(ans+(lucas(n-1,(i+1)/2-1)*i)%p)%p;
if(ans<0)
{
ans+=p;
}
}
}
cout<<ans;
}
《瞿葩的数字游戏》T3-三角圣地(Lucas)的更多相关文章
- 【刷题】洛谷 P2675 《瞿葩的数字游戏》T3-三角圣地
题目背景 国王1带大家到了数字王国的中心:三角圣地. 题目描述 不是说三角形是最稳定的图形嘛,数字王国的中心便是由一个倒三角构成.这个倒三角的顶端有一排数字,分别是1 ~ N.1 ~ N可以交换位置. ...
- 【luoguP2675】《瞿葩的数字游戏》T3-三角圣地
题目背景 国王1带大家到了数字王国的中心:三角圣地. 题目描述 不是说三角形是最稳定的图形嘛,数字王国的中心便是由一个倒三角构成.这个倒三角的顶端有一排数字,分别是1~N.1~N可以交换位置.之后的每 ...
- LUOGU P2675 《瞿葩的数字游戏》T3-三角圣地
题面 解题思路 手推可以得出,最后每个数字的贡献其实就是第n行杨辉三角数,然后直接卢卡斯直接算(今天才找到lucas定理时间复杂度是log n,log以模数为底).代码略麻烦,不想改了. 代码 #in ...
- P2675 《瞿葩的数字游戏》T3-三角圣地
传送门 考虑最上面每个位置的数对答案的贡献 然后就很容易发现: 如果有n层,位置 i 的数对答案的贡献就是C( n-1,i ) 然后就有很显然的贪心做法: 越大的数放越中间,这样它的贡献就会尽可能的大 ...
- 题解 P2674 【《瞿葩的数字游戏》T2-多边形数】
题目说了很清楚,此题找规律,那么就找规律. 我们观察数列. 令k表示数列的第k个数. 三角形数:1 3 6 10 15 两项相减:1 2 3 4 5 再次相减:1 1 1 1 1 四边形数:1 4 9 ...
- C语言猜数字游戏
猜数字游戏,各式各样的实现方式,我这边提供一个实现方式,希望可以帮到新手. 老程序猿就不要看了,黑呵呵 源代码1 include stdio.h include stdlib.h include ti ...
- 不一样的猜数字游戏 — leetcode 375. Guess Number Higher or Lower II
好久没切 leetcode 的题了,静下心来切了道,这道题比较有意思,和大家分享下. 我把它叫做 "不一样的猜数字游戏",我们先来看看传统的猜数字游戏,Guess Number H ...
- java 猜数字游戏
作用:猜数字游戏.随机产生1个数字(1~10),大了.小了或者成功后给出提示. 语言:java 工具:eclipse 作者:潇洒鸿图 时间:2016.11.10 >>>>> ...
- 【原创Android游戏】--猜数字游戏Version 0.1
想当年高中时经常和小伙伴在纸上或者黑板上或者学习机上玩猜数字的游戏,在当年那个手机等娱乐设备在我们那还不是很普遍的时候是很好的一个消遣的游戏,去年的时候便写了一个Android版的猜数字游戏,只是当时 ...
随机推荐
- C# 创建一个WCF服务
做代码统计,方便以后使用: app.config配置文件设置: <configuration> <system.serviceModel> <bindings> & ...
- js系列之js简介
该系列教程都来源于:廖雪峰老师的博客 JavaScript是世界上最流行的脚本语言,因为你在电脑.手机.平板上浏览的所有的网页,以及无数基于HTML5的手机App,交互逻辑都是由JavaScript驱 ...
- 我为什么不用Django而用Flask?
前言 对于初学者来说,找到一个好的框架来学习或者项目开发都是非常有必要的,而当你有一定开发经验后,你应该选择适合当前业务需要的框架.我这里并不想探讨哪个框架好哪个不好,这个永恒的话题就跟探讨“世界上哪 ...
- B树索引学习
https://blog.csdn.net/wl044090432/article/details/53423333
- Android 自定义ListView滚动条样式
使用ListView FastScroller,默认滑块和自定义滑块图片的样子: 设置快速滚动属性很容易,只需在布局的xml文件里设置属性即可: <ListView android:id=&qu ...
- SQL 出现18456
SQL Server 2008R2 18456错误解决方案 SQL Server 2008R2 18456错误解决方案 微软解释说,因密码或用户名错误而使身份验证失败并导致连接尝试被拒时,类似下面 ...
- 生成对抗式网络 GAN的理解
转自:https://zhuanlan.zhihu.com/p/24767059,感谢分享 生成式对抗网络(GAN)是近年来大热的深度学习模型.最近正好有空看了这方面的一些论文,跑了一个GAN的代码, ...
- 文件上传fileupload文件接收
form表单提交数据到servlet后,使用fileupload进行接收. fileupload 是由 apache 的 commons 组件提供的上传组件.它最主要的工作就是帮我们解析 reques ...
- Selenium2学习(六)-- 定位神器CSS
前言 大部分人在使用selenium定位元素时,用的是xpath定位,因为xpath基本能解决定位的需求.css定位往往被忽略掉了,其实css定位也有它的价值,css定位更快,语法更简洁.这一篇css ...
- Visual Studio 2012 未找到与约束 ContractName问题,及printf unsafe问题
1.用VS 2012 创建c++项目失败,提示未找到与约束 ContractName .............的错误 解决办法:下载VS 2012 补丁,很小的一个补丁,不过很管用 地址:http: ...