【BZOJ2045】双亲数

Description

小D是一名数学爱好者,他对数字的着迷到了疯狂的程度。 我们以d = gcd(a, b)表示a、b的最大公约数,小D执著的认为,这样亲密的关系足可以用双亲来描述,此时,我们称有序数对(a, b)为d的双亲数。 与正常双亲不太相同的是,对于同一个d,他的双亲太多了 >_< 比如,(4, 6), (6, 4), (2, 100)都是2的双亲数。 于是一个这样的问题摆在眼前,对于0 < a <= A, 0 < b <= B,有多少有序数对(a, b)是d的双亲数?

Input

输入文件只有一行,三个正整数A、B、d (d <= A, B),意义如题所示。

Output

输出一行一个整数,给出满足条件的双亲数的个数。

Sample Input

5 5 2

Sample Output

3
【样例解释】

满足条件的三对双亲数为(2, 2) (2, 4) (4, 2)

HINT

对于100%的数据满足0 < A, B < 10^ 6

题解

总之就是一旦看到[...=1]就往反演上想就好了

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=1000010;
int n,m,d,num;
int pri[maxn],mu[maxn],sm[maxn];
bool np[maxn];
typedef long long ll;
ll ans;
int main()
{
scanf("%d%d%d",&n,&m,&d),n/=d,m/=d;
if(n<m) swap(n,m);
int i,j,last;
sm[1]=mu[1]=1;
for(i=2;i<=n;i++)
{
if(!np[i]) pri[++num]=i,mu[i]=-1;
sm[i]=sm[i-1]+mu[i];
for(j=1;j<=num&&i*pri[j]<=n;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0)
{
mu[i*pri[j]]=0;
break;
}
mu[i*pri[j]]=-mu[i];
}
}
for(i=1;i<=m;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ans+=1ll*(sm[last]-sm[i-1])*(n/i)*(m/i);
}
printf("%lld",ans);
return 0;
}

【BZOJ2045】双亲数 莫比乌斯反演的更多相关文章

  1. JZYZOJ 1375 双亲数 莫比乌斯反演

    http://172.20.6.3/Problem_Show.asp?id=1375 网上搜推理图. 有一段没有写莫比乌斯反演都快忘了..数学能力--,定理完全不会推,但是这道题整体来说应该是比较好写 ...

  2. [P4450] 双亲数 - 莫比乌斯反演,整除分块

    模板题-- \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[(i,j)=k] = \sum\limits_{i=1}^a\sum\limits_{j=1}^b[k|i ...

  3. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  4. [BZOJ2045]双亲数(莫比乌斯反演)

    双亲数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 959  Solved: 455[Submit][Status][Discuss] Descri ...

  5. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...

  6. 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛

    题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...

  7. BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)

    手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...

  8. luogu 4844 LJJ爱数数 (莫比乌斯反演+数学推导)

    题目大意:求满足gcd(a,b,c)==1,1/a+1/b=1/c,a,b,c<=n的{a,b,c}有序三元组个数 因为题目里有LJJ我才做的这道题 出题人官方题解https://www.cnb ...

  9. BZOJ2045: 双亲数

    2045: 双亲数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 602  Solved: 275[Submit][Status] Descripti ...

随机推荐

  1. Centos中mount命令挂载windows7共享文件夹

    1)  在ip:10.4.35.77的windows机器上新建用户.这里新建username:myshare,password:myshare123. 选择 [计算机]右键 选择[管理],本地用户和组 ...

  2. Unity 提取游戏资源之ktx转换

    http://blog.csdn.net/akof1314/article/details/38022263 从雨松的博文<Unity3D研究院之mac上从.ipa中提取unity3D游戏资源( ...

  3. STL源码剖析(空间配置器)

    前言 在STL中,容器的定义中都带一个模板参数,如vector template <class T, class Alloc = alloc> class vector {...} 其中第 ...

  4. C语言中函数调用过程(如何管理栈空间)

    ps:先做草稿,以后有时间再整理并贴图,:) 主要是利用栈底寄存器(ebp).栈顶寄存器(esp)跟eax寄存器(存储返回值)来实现. 假设P调用Q: P() { Q(1,2); } (跟实际情况可能 ...

  5. LoadRunner监控tomcat

    LoadRunner监控tomcat (2012-10-25 14:01:42)转载▼ double atof (const char * string);Action(){    // 保存JVM内 ...

  6. 转:EMQ(emqttd) 2.x 安装和使用(物联网传输控制协议的Broker)

    支持下国产开源. MQTT物联网传输控制协议:<MQTT-3.1.1-CN.pdf> 下载:emqttd-centos64-v2.0-rc.2-20161019.zip 安装: $ unz ...

  7. TLS

    1. SSL简介 SSL(SecureSocket Layer)安全套接层,是网景公司提出的用于保证Server与client之间安全通信的一种协议,该协议位于TCP/IP协议与各应用层协议之间,即S ...

  8. 算法基础:整数拆分问题(Golang实现)

    一个整数总能够拆分为2的幂的和.比如: 7=1+2+4 7=1+2+2+2 7=1+1+1+4 7=1+1+1+2+2 7=1+1+1+1+1+2 7=1+1+1+1+1+1+1 总共同拥有6种不同的 ...

  9. nginx环境下启动php-fpm

    nginx环境下启动php-fpm 1.首先查看是否安装了php-fpm 这个我试了好多命令都不行比如 rpm -qa php-fpm , rpm -ql php-fpm , which php-fp ...

  10. SpringCloud系列十五:使用Hystrix实现容错

    1. 回顾 上文讲解了容错的重要性,以及容错需要实现的功能. 本文来讲解使用Hystrix实现容错. 2. Hystrix简介 Hystrix是Netflix开源的一个延迟和容错库,用于隔离访问远程系 ...