单向队列(deque)

单项队列(先进先出 FIFO )

1、创建单向队列

import queue

q = queue.Queue()

q.put('')
q.put('evescn')

2、查看单向队列

# 单向队列是先进先出,要查看单向队列,需使用get获取单向队列的值

print(q.get())
print(q.get()) 输出结果:
123
evescn

3、单向队列和双向队列的区别

# 双向队列:
调用:import collections
collections.deque() 队列左边右边都可插入/获取数据 # 单向队列:
调用:import queue
queue.Queue 只能右端插入数据,左端获取数据

4、查看单向队列的方法

>>> dir(q)
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_get', '_init', '_put', '_qsize', 'all_tasks_done', 'empty', 'full', 'get', 'get_nowait', 'join', 'maxsize', 'mutex', 'not_empty', 'not_full', 'put', 'put_nowait', 'qsize', 'queue', 'task_done', 'unfinished_tasks']
class Queue:
"""Create a queue object with a given maximum size. If maxsize is <= 0, the queue size is infinite.
"""
def __init__(self, maxsize=0):
self.maxsize = maxsize
self._init(maxsize)
# mutex must be held whenever the queue is mutating. All methods
# that acquire mutex must release it before returning. mutex
# is shared between the three conditions, so acquiring and
# releasing the conditions also acquires and releases mutex.
self.mutex = _threading.Lock()
# Notify not_empty whenever an item is added to the queue; a
# thread waiting to get is notified then.
self.not_empty = _threading.Condition(self.mutex)
# Notify not_full whenever an item is removed from the queue;
# a thread waiting to put is notified then.
self.not_full = _threading.Condition(self.mutex)
# Notify all_tasks_done whenever the number of unfinished tasks
# drops to zero; thread waiting to join() is notified to resume
self.all_tasks_done = _threading.Condition(self.mutex)
self.unfinished_tasks = 0 def task_done(self):
"""Indicate that a formerly enqueued task is complete. Used by Queue consumer threads. For each get() used to fetch a task,
a subsequent call to task_done() tells the queue that the processing
on the task is complete. If a join() is currently blocking, it will resume when all items
have been processed (meaning that a task_done() call was received
for every item that had been put() into the queue). Raises a ValueError if called more times than there were items
placed in the queue.
"""
self.all_tasks_done.acquire()
try:
unfinished = self.unfinished_tasks - 1
if unfinished <= 0:
if unfinished < 0:
raise ValueError('task_done() called too many times')
self.all_tasks_done.notify_all()
self.unfinished_tasks = unfinished
finally:
self.all_tasks_done.release() def join(self):
"""Blocks until all items in the Queue have been gotten and processed. The count of unfinished tasks goes up whenever an item is added to the
queue. The count goes down whenever a consumer thread calls task_done()
to indicate the item was retrieved and all work on it is complete. When the count of unfinished tasks drops to zero, join() unblocks.
"""
self.all_tasks_done.acquire()
try:
while self.unfinished_tasks:
self.all_tasks_done.wait()
finally:
self.all_tasks_done.release() def qsize(self):
"""Return the approximate size of the queue (not reliable!)."""
self.mutex.acquire()
n = self._qsize()
self.mutex.release()
return n def empty(self):
"""Return True if the queue is empty, False otherwise (not reliable!)."""
self.mutex.acquire()
n = not self._qsize()
self.mutex.release()
return n def full(self):
"""Return True if the queue is full, False otherwise (not reliable!)."""
self.mutex.acquire()
n = 0 < self.maxsize == self._qsize()
self.mutex.release()
return n def put(self, item, block=True, timeout=None):
"""Put an item into the queue. If optional args 'block' is true and 'timeout' is None (the default),
block if necessary until a free slot is available. If 'timeout' is
a non-negative number, it blocks at most 'timeout' seconds and raises
the Full exception if no free slot was available within that time.
Otherwise ('block' is false), put an item on the queue if a free slot
is immediately available, else raise the Full exception ('timeout'
is ignored in that case).
"""
self.not_full.acquire()
try:
if self.maxsize > 0:
if not block:
if self._qsize() == self.maxsize:
raise Full
elif timeout is None:
while self._qsize() == self.maxsize:
self.not_full.wait()
elif timeout < 0:
raise ValueError("'timeout' must be a non-negative number")
else:
endtime = _time() + timeout
while self._qsize() == self.maxsize:
remaining = endtime - _time()
if remaining <= 0.0:
raise Full
self.not_full.wait(remaining)
self._put(item)
self.unfinished_tasks += 1
self.not_empty.notify()
finally:
self.not_full.release() def put_nowait(self, item):
"""Put an item into the queue without blocking. Only enqueue the item if a free slot is immediately available.
Otherwise raise the Full exception.
"""
return self.put(item, False) def get(self, block=True, timeout=None):
"""Remove and return an item from the queue. If optional args 'block' is true and 'timeout' is None (the default),
block if necessary until an item is available. If 'timeout' is
a non-negative number, it blocks at most 'timeout' seconds and raises
the Empty exception if no item was available within that time.
Otherwise ('block' is false), return an item if one is immediately
available, else raise the Empty exception ('timeout' is ignored
in that case).
"""
self.not_empty.acquire()
try:
if not block:
if not self._qsize():
raise Empty
elif timeout is None:
while not self._qsize():
self.not_empty.wait()
elif timeout < 0:
raise ValueError("'timeout' must be a non-negative number")
else:
endtime = _time() + timeout
while not self._qsize():
remaining = endtime - _time()
if remaining <= 0.0:
raise Empty
self.not_empty.wait(remaining)
item = self._get()
self.not_full.notify()
return item
finally:
self.not_empty.release() def get_nowait(self):
"""Remove and return an item from the queue without blocking. Only get an item if one is immediately available. Otherwise
raise the Empty exception.
"""
return self.get(False) # Override these methods to implement other queue organizations
# (e.g. stack or priority queue).
# These will only be called with appropriate locks held # Initialize the queue representation
def _init(self, maxsize):
self.queue = deque() def _qsize(self, len=len):
return len(self.queue) # Put a new item in the queue
def _put(self, item):
self.queue.append(item) # Get an item from the queue
def _get(self):
return self.queue.popleft()

Queue.Queue

5、单向队列常用的方法

# put 向队列中放入一个数
# get 取出一个数 import queue q = queue.Queue() q.put('')
q.put('evescn') print(q.get())
print(q.get()) 输出结果: # 先进先出
123
evescn
# qsize 统计当前队列长度

import queue

q = queue.Queue()

q.put('')
q.put('evescn') print(q.qsize() # 输出:2
# empty 队列是否为空

import queue

q = queue.Queue()

print(q.empty()

# 输出:True
# full 队列是否满了,返回True

import queue

q = queue.Queue(1)

print(q.empty())
print(q.full()) q.put('') print(q.full()) # 输出:
True
False
True

Python collections系列之单向队列的更多相关文章

  1. Python collections系列之双向队列

    双向队列(deque) 一个线程安全的双向队列 1.创建一个双向队列 import collections d = collections.deque() d.append(') d.appendle ...

  2. Python collections系列之有序字典

    有序字典(orderedDict ) orderdDict是对字典类型的补充,他记住了字典元素添加的顺序 1.创建一个有序字典 import collections dic = collections ...

  3. Python collections系列之可命名元组

    可命名元组(namedtuple)  根据nametuple可以创建一个包含tuple所有功能以及其他功能的类 1.创建一个坐标类 import collections # 创建类, defaultd ...

  4. Python collections系列之默认字典

    默认字典(defaultdict)  defaultdict是对字典的类型的补充,它默认给字典的值设置了一个类型. 1.创建默认字典 import collections dic = collecti ...

  5. Python collections系列之计数器

    计数器(counter) Counter是对字典(无序)类型的补充,用于追踪值的出现次数. 使用counter需要导入 collections 类 ps:具备字典的所有功能 + 自己的功能 1.创建一 ...

  6. Python 第三篇(下):collections系列、集合(set)、单双队列、深浅copy、内置函数

     一.collections系列: collections其实是python的标准库,也就是python的一个内置模块,因此使用之前导入一下collections模块即可,collections在py ...

  7. python递归、collections系列以及文件操作进阶

    global log 127.0.0.1 local2 daemon maxconn log 127.0.0.1 local2 info defaults log global mode http t ...

  8. python之路(二)-collections系列

    collections提供了一些比较方便的方法,使用时需要先导入模块 导入模块: import collections 1. 计数器Counter 统计参数中出现的次数,以字典的方式返回结果,参数可以 ...

  9. Python之set集合与collections系列

    1>set集合:是一个无序且不重复的元素集合:访问速度快,解决了重复的问题: s2 = set(["che","liu","haha" ...

随机推荐

  1. 【转载】OPENWRT入门之四------openwrt命令行模式命令及其工具

    连接来源http://bbs.xiaomi.cn/thread-9734746-1-1.html 需要学会用ssh登录路由器用linux命令查看.ps 命令查看当前系统运行的进程信息free 命令查看 ...

  2. JMeter学习(十二)JMeter学习参数化User Defined Variables与User Parameters

    相同点:二者都是进行参数化的. 一.User Defined Variables 1.添加方法:选择“线程组”,右键点击添加-Config Element-User Defined Variables ...

  3. Optional int parameter 'time' is present but cannot be translated into a null value due to being decla

    今天在操作redis的时候报了这个错:Optional int parameter 'time' is present but cannot be translated into a null val ...

  4. HDU 4348 To the moon (主席树区间更新)

    题意:首先给你n个数,开始时间为0,最后按照操作输出 给你四种操作: 1. C l r d :  在(l,r)区间都加上d,时间加一2. Q l r :  询问现在(l,r)的区间和3. H l r ...

  5. 【转】ListView优化为何ViewHolder用static类

    如果有人还不了解ViewHolder为什么可以起到优化作用,我这边再做下简单说明:Android的findViewById动作是比较耗时的,需要遍历布局的树形结构,才能找到相应的视图.所以如果想在这一 ...

  6. SQL server 2008 T-sql 总结

    数据库的实现 1.添加数据:insert [into] 表名 (字段1,字段2,···) values (值1,值2,····)     其中,into可选. 2.修改数据:update 表名 set ...

  7. python使用笔记

    修改文件模板,支持中文. File -> Settings -> Editor -> File and Code templates -> python Scropt 在里面加 ...

  8. cplusplus.com

    1/ http://www.cplusplus.com/reference/map/multimap/find/ 2. C

  9. 安装rackspace private cloud --4 配置Target hosts

    在每个target host上执行以下操作: Naming target hosts. Install the operating system. Generate and set up securi ...

  10. (转)Openstack Cascading和Nova Cell

    Openstack是看着AWS成长起来的,这点毋庸置疑:所以AWS大规模商用已成事实的情况下,Openstack也需要从架构和产品实现上进行优化,以满足大规模商用的要求.从已有的实现来看其中两种方式值 ...