In finance, Internal Rate of Return (IRR) is the discount rate of an investment when NPV equals zero. Formally, given TCF0CF1, ..., CFT, then IRR is the solution to the following equation:

NPV = CF0 +  +  + K +  = 0

Your task is to find all valid IRRs. In this problem, the initial cash-flow CF0 < 0, while other cash-flows are all positive (CFi > 0 for all i = 1, 2,...).

Important: IRR can be negative, but it must be satisfied that IRR > - 1.

Input

There will be at most 25 test cases. Each test case contains two lines. The first line contains a single integer T ( 1T10), the number of positive cash-flows. The second line contains T + 1 integers: CF0CF1,CF2, ..., CFT, where CF0 < 0, 0 < CFi < 10000 ( i = 1, 2,..., T). The input terminates by T = 0.

Output

For each test case, print a single line, containing the value of IRR, rounded to two decimal points. If noIRR exists, print ``No" (without quotes); if there are multiple IRRs, print ``Too many"(without quotes).

题目大意:给出CF[0]<0,CF[i]>0,i>0,求IRR(IRR>-1)令NPV = 0.

思路:设f(IRR) = NPV,这就变成了一个函数,稍微观察一下,可以发现当IRR∈(-1, +∞)的时候是单调递减的(好像是吧做完忘了),这样我们就可以二分答案0点了。当IRR无限接近-1的时候,f(IRR)→+∞(好像是吧),当IRR→+∞时,f(IRR)→CF[0]<0,令left = -1、right = 1e5(我也不知道该取什么我随便取的然后AC了),随便二分一下就好。

PS:恩?说完了?那什么时候输出No和Too many啊?关于这个坑爹的问题,看完前面的分析,笔者完全不知道什么时候会出现这两个答案,于是妥妥地没将这两个东西写进代码然后AC了。这里还有一个小技巧,题目的样例完全没有出现No和Too many这两种答案,很可能说明这两种答案都是不存在的。比如很多的题目说如果什么什么得不到答案就输出-1那样,它的样例大多都会有一个是输出-1的,当然这不是绝对的……

代码(15MS):

 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
using namespace std; const int MAXN = ;
const double EPS = 1e-; inline int sgn(double x) {
if(fabs(x) < EPS) return ;
return x > ? : -;
} int CF[MAXN];
int T; double f(double IRR) {
double ret = CF[], tmp = + IRR;
for(int i = ; i <= T; ++i) {
ret += CF[i] / tmp;
tmp = tmp * ( + IRR);
}
return ret;
} double solve() {
double ans = -;
double L = -, R = 1e5;
while(R - L > EPS) {
double mid = (R + L) / ;
if(sgn(f(mid)) == ) L = mid;
else R = mid;
}
return ans = L;
} int main() {
while(scanf("%d", &T) != EOF) {
if(T == ) break;
for(int i = ; i <= T; ++i) scanf("%d", &CF[i]);
//double t; while(cin>>t) cout<<f(t)<<endl;
printf("%.2f\n", solve());
}
}

UVA 11881 Internal Rate of Return(数学+二分)的更多相关文章

  1. UVA 11881 - Internal Rate of Return - [二分]

    依然是来自2017/9/17的周赛水题…… 题目链接:https://cn.vjudge.net/problem/UVA-11881 题解: 观察这个函数: 由于CF[i]固定值,因此NPV(IRR) ...

  2. UVA.10474 Where is the Marble ( 排序 二分查找 )

    UVA.10474 Where is the Marble ( 排序 二分查找 ) 题意分析 大水题一道.排序好找到第一个目标数字的位置,返回其下标即可.暴力可过,强行写了一发BS,发现错误百出.应了 ...

  3. UVA 10668 - Expanding Rods(数学+二分)

    UVA 10668 - Expanding Rods 题目链接 题意:给定一个铁棒,如图中加热会变成一段圆弧,长度为L′=(1+nc)l,问这时和原来位置的高度之差 思路:画一下图能够非常easy推出 ...

  4. Success Rate CodeForces - 807C (数学+二分)

    You are an experienced Codeforces user. Today you found out that during your activity on Codeforces ...

  5. 【UVA 11865】 Stream My Contest (二分+MDST最小树形图)

    [题意] 你需要花费不超过cost元来搭建一个比赛网络.网络中有n台机器,编号0~n-1,其中机器0为服务器,其他机器为客户机.一共有m条可以使用的网线,其中第i条网线的发送端是机器ui,接收端是机器 ...

  6. AtCoder Express(数学+二分)

    D - AtCoder Express Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Statement In ...

  7. HDU 6216 A Cubic number and A Cubic Number(数学/二分查找)

    题意: 给定一个素数p(p <= 1e12),问是否存在一对立方差等于p. 分析: 根据平方差公式: 因为p是一个素数, 所以只能拆分成 1*p, 所以 a-b = 1. 然后代入a = b + ...

  8. UVA 11419 SAM I AM(最大二分匹配&最小点覆盖:König定理)

    题意:在方格图上打小怪,每次可以清除一整行或一整列的小怪,问最少的步数是多少,又应该在哪些位置操作(对输出顺序没有要求). 分析:最小覆盖问题 这是一种在方格图上建立的模型:令S集表示“行”,T集表示 ...

  9. CF 483B. Friends and Presents 数学 (二分) 难度:1

    B. Friends and Presents time limit per test 1 second memory limit per test 256 megabytes input stand ...

随机推荐

  1. linux简介及虚拟机安装

    1.简介 计算机组成

  2. 20.springboot项目部署到linux服务器文件上传临时路径处理问题

    1.前言 把项目部署到服务器上之后,文件上传默认会在/tmp路径中. 之前想了各种解决办法,比如如何更改这个上传路径...... 最后发现不是个好的方法,当然就想到了更好的解决方案. 就是我把上传文件 ...

  3. springboot 整合dubbo 消费模块引入springboot 之后自动注入jdbc 模块导致启动报错问题

    方案一: 排除方法 pom文件直接将数据起步模块内排除数据源自动注入 jdbc jar <!--mybatis-plus 集成 --><!--mybitis--><dep ...

  4. [Linux/Unix]常用命令

    1.查看日志后200行有“TNS字符串的详细信息 file_name |grep TNS 实时查看文件情况: tail -f file_name 2.查看路由情况: #Linux环境 tracerou ...

  5. javascript跳转页面

    <script type="text/javascript"> function openNewTab() { parent.addExampleTab({ id: a ...

  6. Java项目中的下载 与 上传

    使用超级链接下载,一般会在浏览器中直接打开,而不是出现下载框 如果要确保出现下载框下载文件,则需要设置response中的参数: 1是要设置用附件的方式下载 Content-Disposition: ...

  7. 数字三角形W

    题目描述 Description 数字三角形 要求走到最后mod 100最大 输入描述 Input Description 第1行n,表示n行 第2到n+1行为每个的权值 输出描述 Output De ...

  8. HTTP基本内容

    *********************HTTP基本交互*************************** HTTP请求格式:HTTP 请求由三部分组成:请求行.请求头和请求正文请求行: 请求方 ...

  9. Mysql8.0 3306端口无法远程连接

    在阿里云上搭建MySql8.0数据库服务,在阿里云上可以成功连接登陆使用,但用自己的电脑远程连接时却无法成功连接 经过资料查找,找出原因如下: 1.首先通过查看MySQL的的用户信息 可以看到host ...

  10. 浅谈localStorage的用法

    今天接到一个任务,说是让自动调节textarea标记的输入高度,而且还要记录下来,下次登录的时候还是调节后的高度,我第一时间就想到了localStorage的用法,直接代码献上: <html l ...