J. Sum

  • 26.87%
  • 1000ms
  • 512000K
 

A square-free integer is an integer which is indivisible by any square number except 11. For example, 6 = 2 \cdot 36=2⋅3 is square-free, but 12 = 2^2 \cdot 312=22⋅3 is not, because 2^222 is a square number. Some integers could be decomposed into product of two square-free integers, there may be more than one decomposition ways. For example, 6 = 1\cdot 6=6 \cdot 1=2\cdot 3=3\cdot 2, n=ab6=1⋅6=6⋅1=2⋅3=3⋅2,n=ab and n=ban=ba are considered different if a \not = ba̸=b. f(n)f(n) is the number of decomposition ways that n=abn=ab such that aa and bb are square-free integers. The problem is calculating \sum_{i = 1}^nf(i)∑i=1n​f(i).

Input

The first line contains an integer T(T\le 20)T(T≤20), denoting the number of test cases.

For each test case, there first line has a integer n(n \le 2\cdot 10^7)n(n≤2⋅107).

Output

For each test case, print the answer \sum_{i = 1}^n f(i)∑i=1n​f(i).

Hint

\sum_{i = 1}^8 f(i)=f(1)+ \cdots +f(8)∑i=18​f(i)=f(1)+⋯+f(8)
=1+2+2+1+2+4+2+0=14=1+2+2+1+2+4+2+0=14.

样例输入复制

2
5
8

样例输出复制

8
14

题目来源

ACM-ICPC 2018 南京赛区网络预赛

题意很好理解,就是求1-n中没有平方因数的数的个数。首先预处理出来,然后就直接输出就可以了。

类似欧拉函数筛素数,在筛素数的时候把平方因数筛掉就可以了。

代码:

 //J-筛无平方因数的数
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<deque>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll; const double PI=acos(-1.0);
const double eps=1e-;
const ll mod=1e9+;
const int inf=0x3f3f3f3f;
const int maxn=2e7+;
const int maxm=+;
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); bool is_prime[maxn];
int prime[maxn];
ll f[maxn],ans[maxn];
int h; void init(int n)
{
f[]=;
for(int i=;i<n;i++){
if(!is_prime[i]){
prime[++h]=i;
f[i]=;
}
for(int j=;j<=h&&i*prime[j]<n;j++){
is_prime[i*prime[j]]=;
if(i%prime[j]==){
if(i%(prime[j]*prime[j])==)
f[i*prime[j]]=;
else
f[i*prime[j]]=f[i]/;
break;
}
else{
f[i*prime[j]]=f[i]*;
}
}
}
for(int i=;i<maxn;i++)
ans[i]=ans[i-]+f[i];
} int main()
{
h=;
init(maxn);
int t;
scanf("%d",&t);
while(t--){
int n;
scanf("%d",&n);
printf("%lld\n",ans[n]);
}
return ;
}

溜了。。。

计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)的更多相关文章

  1. 计蒜客 31458.Features Track-滚动数组+STL(map)连续计数 (ACM-ICPC 2018 徐州赛区网络预赛 F)

    F. Features Track Morgana is learning computer vision, and he likes cats, too. One day he wants to f ...

  2. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  3. ACM-ICPC 2018 南京赛区网络预赛 J sum (找一个数拆成两个无平方因子的组合数)

    题目大意:就是找一个数拆成两个无平方因子的组合数,然后求个前缀和  ; 分析:运用筛法的思想 ,  因为有序对是由两个合法的数字组成的,所以只要保证第一个数合法,第二个数也合法就行,找出合法的第二个数 ...

  4. ACM-ICPC 2018 南京赛区网络预赛 J.sum(欧拉筛)

    题目来源:https://nanti.jisuanke.com/t/A1956 题意:找一个数拆成无平方因子的组合数,然后求前缀和. 解题思路:我们可以把某个数分解质因数,如果某个数可以分解出三个相同 ...

  5. ACM-ICPC 2018 南京赛区网络预赛 J题Sum(线性筛素数)

    题目链接:https://nanti.jisuanke.com/t/30999 参考自博客:https://kuangbin.github.io/2018/09/01/2018-ACM-ICPC-Na ...

  6. 线性素数筛 ACM-ICPC 2018 南京赛区网络预赛 J Sum

    https://www.jisuanke.com/contest/1555?view=challenges 题意: 题解:写完都没发现是个积性函数233 想法就是对x分解质因数,f(x)就是2^k,其 ...

  7. 【ACM-ICPC 2018 南京赛区网络预赛 J】Sum

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 线性筛求出每个数的最小质因子x for 从1-n 对于i,它的最小质因子为x 考虑i=ab 如果i能被x^3整除 那么这x怎么分配给 ...

  8. ACM-ICPC 2018 南京赛区网络预赛 J Sum (思维+打表)

    https://nanti.jisuanke.com/t/30999 题意 f(i)表示i能拆分成两个数的乘积,且要求这两个数中各自都没有出现超过1次的质因子的方案数.每次给出n,求∑(n,i=1)f ...

  9. ACM-ICPC 2018 南京赛区网络预赛 - J. Sum (找规律+打表)

    题意:\(f(i):i\)能拆分成两个数的乘积,且要求这两个数中各自都没有出现超过1次的质因子.每次给出n,求\(\sum_{i=1}^{n}f(i)\) 分析:\(1 \le n \le 2e7\) ...

随机推荐

  1. 在VS2012中设置默认启动

    Visual Studio 2012一个解决方案中多个项目,如果想选择哪个项目就设置哪个项目为启动项就好了. 第一种方法,工具===〉〉选项===〉〉〉项目解决方案===〉〉〉对于新的解决方案,使用单 ...

  2. BZOJ4544 椭圆上的整点(数论)

    https://www.cnblogs.com/Gloid/p/9538413.html 基本思路没有太大差别.得到2n=d(a2+3b2),其中d=gcd(n-x,n+x),n-x==a2& ...

  3. 移动开发:美团外卖Android Lint代码检查实践

    概述 Lint是Google提供的Android静态代码检查工具,可以扫描并发现代码中潜在的问题,提醒开发人员及早修正,提高代码质量.除了Android原生提供的几百个Lint规则,还可以开发自定义L ...

  4. [NOI2010]能量采集 解题报告

    [NOI2010]能量采集 题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. ...

  5. 【ZJ选讲·字符串折叠】

    给一个字符串(len<=100) 把这个字符串折叠(就是压缩) 记 X(子串) 表示重复 X次该子串 比如 3(orz)  orzorzorz  来点神奇例子: AAAAAAAAAA ...

  6. ext大法好啊

    http://www.cnblogs.com/keshuqi/p/6257895.html

  7. PHP 5.4语法改进与弃用特性

    PHP 5.4于本月尘埃落定,它是 PHP 自 2009 年以来的首次重大更新.该版本对语言部分进行了增强,包括支持 Traits 和移除部分争议特性. Traits 同 Java 和 .NET 一样 ...

  8. CSS3学习之radial-gradient(径向渐变)

    转自:http://www.cnblogs.com/rainman/p/5133685.html 1.语法 径向渐变不同于线性渐变,线性渐变是从“一个方向”向“另一个方向”的颜色渐变,而径向渐变是从“ ...

  9. nginx解决超长请求串(413 request Entity too Large错误解决办法)

    <div class="hide-article-box text-center" style="display: block;"> <a c ...

  10. YDB基本使用详解(转)

    第七章YDB基本使用详解 一.如何与YDB对接(交互) 目前延云YDB提供如下几种方式 l命令行的方式 lWeb http接口的方式 lJDBC接口的方式 通过Java编程接入 通过可视化SQL分析统 ...