Pandas统计计算和描述
Pandas统计计算和描述
示例代码:
import numpy as np
import pandas as pd df_obj = pd.DataFrame(np.random.randn(5,4), columns = ['a', 'b', 'c', 'd'])
print(df_obj)
运行结果:
a b c d
0 1.469682 1.948965 1.373124 -0.564129
1 -1.466670 -0.494591 0.467787 -2.007771
2 1.368750 0.532142 0.487862 -1.130825
3 -0.758540 -0.479684 1.239135 1.073077
4 -0.007470 0.997034 2.669219 0.742070
常用的统计计算
sum, mean, max, min…
axis=0 按列统计,axis=1按行统计
skipna 排除缺失值, 默认为True
示例代码:
df_obj.sum() df_obj.max() df_obj.min(axis=1, skipna=False)
运行结果:
a 0.605751
b 2.503866
c 6.237127
d -1.887578
dtype: float64 a 1.469682
b 1.948965
c 2.669219
d 1.073077
dtype: float64 0 -0.564129
1 -2.007771
2 -1.130825
3 -0.758540
4 -0.007470
dtype: float64
常用的统计描述
describe 产生多个统计数据
示例代码:
print(df_obj.describe())
运行结果:
a b c d
count 5.000000 5.000000 5.000000 5.000000
mean 0.180305 0.106488 0.244978 0.178046
std 0.641945 0.454340 1.064356 1.144416
min -0.677175 -0.490278 -1.164928 -1.574556
25% -0.064069 -0.182920 -0.464013 -0.089962
50% 0.231722 0.127846 0.355859 0.190482
75% 0.318854 0.463377 1.169750 0.983663
max 1.092195 0.614413 1.328220 1.380601
常用的统计描述方法:


Pandas统计计算和描述的更多相关文章
- Pandas的函数应用、层级索引、统计计算
1.Pandas的函数应用 1.apply 和 applymap 1. 可直接使用NumPy的函数 示例代码: # Numpy ufunc 函数 df = pd.DataFrame(np.random ...
- 统计计算与R语言的资料汇总(截止2016年12月)
本文在Creative Commons许可证下发布. 在fedora Linux上断断续续使用R语言过了9年后,发现R语言在国内用的人逐渐多了起来.由于工作原因,直到今年暑假一个赴京工作的机会与一位统 ...
- sql: T-SQL 统计计算(父子關係,樹形,分級分類的統計)
---sql: T-SQL 统计计算(父子關係,樹形,分級分類的統計) ---2014-08-26 塗聚文(Geovin Du) CREATE PROCEDURE proc_Select_BookKi ...
- 闰平年简介及计算过程描述 - Java代码实现
import java.util.Scanner; /** * @author Shelwin Wei * 分析过程请参照<闰平年简介及计算过程描述>,网址 http://www.cnbl ...
- Python基础-使用range创建数字列表以及简单的统计计算和列表解析
1.使用函数 range() numbers = list(range[1,6]) print (numbers) 结果: [1,2,3,4,5] 使用range函数,还可以指定步长,例如,打印1~1 ...
- CyclicBarrier开启多个线程进行计算,最后统计计算结果
有一个大小为50000的数组,要求开启5个线程分别计算10000个元素的和,然后累加得到总和 /** * 开启5个线程进行计算,最后所有的线程都计算完了再统计计算结果 */ public class ...
- 使用if else if else 统计计算
package review20140419;/* * 统计一个班级的成绩,并统计优良中差和不及格同学个数以及求平均分 */public class Test2 { //程序的入口 pub ...
- 智能ERP收银统计-优惠统计计算规则
1.报表统计->收银统计->优惠统计规则 第三方平台优惠:(堂食订单:支付宝口碑券优惠)+(外卖订单:商家承担优惠) 自平台优惠:(堂食订单:商家后台优 ...
- MongoDB 中聚合统计计算--$SUM表达式
我们一般通过表达式$sum来计算总和.因为MongoDB的文档有数组字段,所以可以简单的将计算总和分成两种:1,统计符合条件的所有文档的某个字段的总和:2,统计每个文档的数组字段里面的各个数据值的和. ...
随机推荐
- hdu 5265
http://acm.hdu.edu.cn/showproblem.php?pid=5256 题目不错,题面忍不住骂一句mmp.......后面说ai都是正整数,我以为修改后也必须是正整数,前面又说只 ...
- Flask ajax 动态html 的javascript 事件失效
$('.db_edit').click(function(){ $(".editdbproduct").val($(this).parent().parent().find('.e ...
- 使用Jenkins自动编译我的 java 项目 git maven jenkins
之前的项目已经将jenkins部署好,现在添加maven项目 准备工作 安装插件 Git plugin Publish Over SSH 全局设置 key: 是 linux服务器的私钥 Global ...
- DRF 的 版本,解析器,与序列化
DRF 的 版本,解析器,与序列化 补充 配置文件中的 类的调用: (字符串) v1 = ["view.xx.apth.Role","view.xx.apth.Role& ...
- 持久层框架:MyBatis 3.2(2)
每个MyBatis应用程序主要都是使用SqlSessionFactory实例的,一个SqlSessionFactory实例可以通过SqlSessionFactoryBuilder获得.SqlSessi ...
- Android数据读取之Sqlite数据库操作
咱们书接上文,继续来说说Android数据读取,这回,我们要讲的是Sqlite数据库的相关操作.以一个实例开始吧: 首先,上图,看看做成后的效果: 大概描述:类似于浏览器的收藏夹,网站名称,网站地址, ...
- 《深入理解java虚拟机》学习笔记之编译优化技术
郑重声明:本片博客是学习<深入理解Java虚拟机>一书所记录的笔记,内容基本为书中知识. Java程序员有一个共识,以编译方式执行本地代码比解释方式更快,之所以有这样的共识,除去虚拟机解释 ...
- Python itertools模块中的product函数
product 用于求多个可迭代对象的笛卡尔积(Cartesian Product),它跟嵌套的 for 循环等价.即: product(A, B) 和 ((x,y) for x in A for y ...
- Java String 面试题以及答案
String是最常使用的Java类之一,整理的了一些重要的String知识分享给大家. 作为一个Java新手程序员,对String进行更深入的了解很有必要.如果你是有几年Java开发经验,可以根据目录 ...
- HihoCoder1621 : 超市规划(四边形DP优化)()
超市规划 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi居住的城市的中轴线恰好是一条马路.沿着这条马路一共坐落有N个居民小区,其中第i个小区距离马路一端的距离是A ...
