HDU5748---(记录每个元素的 最长上升子序列 nlogn)
分析:
给一个序列,求出每个位置结尾的最长上升子序列
O(n^2) 超时
#include "cstdio"
#include "algorithm"
#define N 1005
#define INF 0X3f3f3f3f
using namespace std;
int a[N];
int dp[N];
void solve(int n)
{
for(int i=;i<n;i++)
{
dp[i]=;
for(int j=;j<i;j++)///往前找寻美妙的回忆
{
if(a[j]<a[i])
{
dp[i]=std::max(dp[i],dp[j]+);
}
}
}
for(int i=;i<n;i++)
{
if(i==)
printf("%d",dp[]);
else
printf(" %d",dp[i]);
}
printf("\n");
} int main()
{
int t,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d",&a[i]);
solve(n);
}
}
优化为O(nlogn) AC
#include "cstdio"
#define N 100005
#include "algorithm"
using namespace std;
int n;
int a[N];
int dp[N];
int ans[N];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&a[]);
int top=;///最长上升子序列长度
dp[]=a[];///=最后一个元素
ans[]=top;///每个位置的 最长上升..长度 for(int j=;j<n;j++)///对每个元素
{
scanf("%d",&a[j]);
if(a[j]>dp[top])///变长
{
top++;
dp[top]=a[j];
ans[j]=top;
}
else
{
int pos=lower_bound(dp,dp+top,a[j])-dp;///二分查找位置 替换元素
dp[pos]=a[j];
ans[j]=pos;
}
}
for(int i=;i<n;i++)
{
if(i==)
printf("%d",ans[i]);
else
printf(" %d",ans[i]);
}
printf("\n");
}
}
若只要最长...,只输出ans[n-1]
可将上述解法当做一模板
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
int dp[];
const int inf=0x7fffffff;
int a[]={,,,,,,};
const int maxn=;
int main()
{
fill(dp,dp+,inf);
for(int i=;i<;i++)
{
*lower_bound(dp,dp+,a[i])=a[i];
}
int len=lower_bound(dp,dp+,inf)-dp;
for(int i=;i<len;i++)
cout<<dp[i]<<endl;
return ;
}
HDU5748---(记录每个元素的 最长上升子序列 nlogn)的更多相关文章
- HDU 1025 Constructing Roads In JGShining's Kingdom(求最长上升子序列nlogn算法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1025 解题报告:先把输入按照r从小到大的顺序排个序,然后就转化成了求p的最长上升子序列问题了,当然按p ...
- 【算法】最长公共子序列(nlogn)
转载注明出处:http://blog.csdn.net/wdq347/article/details/9001005 (修正了一些错误,并自己重写了代码) 最长公共子序列(LCS)最常见的算法是时间复 ...
- 最长公共子序列 nlogn
先来个板子 #include<bits/stdc++.h> using namespace std; , M = 1e6+, mod = 1e9+, inf = 1e9+; typedef ...
- [poj 1533]最长上升子序列nlogn树状数组
题目链接:http://poj.org/problem?id=2533 其实这个题的数据范围n^2都可以过,只是为了练习一下nlogn的写法. 最长上升子序列的nlogn写法有两种,一种是变形的dp, ...
- DP练习 最长上升子序列nlogn解法
openjudge 百练 2757:最长上升子序列 总时间限制: 2000ms 内存限制: 65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候, ...
- NYOJ 214 最长上升子序列nlogn
普通的思路是O(n2)的复杂度,这个题的数据量太大,超时,这时候就得用nlogn的复杂度的算法来做,这个算法的主要思想是只保存有效的序列,即最大递增子序列,然后最后得到数组的长度就是最大子序列.比如序 ...
- hdu1950 最长上升子序列nlogn
简单. #include<cstdio> #include<cstring> #include<iostream> using namespace std; ; i ...
- hdu1025 最长上升子序列 (nlogn)
水,坑. #include<cstdio> #include<cstring> #include<iostream> #include<algorithm&g ...
- 最长上升子序列 nlogn
; LL num[N]; LL dp[N]; LL go(LL l, LL r, LL k) { for (; r >= l; r--) if (dp[r] <= k) return r; ...
随机推荐
- 2002: [Hnoi2010]Bounce 弹飞绵羊
2002: [Hnoi2010]Bounce 弹飞绵羊 https://www.lydsy.com/JudgeOnline/problem.php?id=2002 分析: 绵羊在弹飞的路径中相当于一棵 ...
- java堆内存模型
广泛地说,JVM堆内存被分为两部分——年轻代(Young Generation)和老年代(Old Generation). 年轻代 年轻代是所有新对象产生的地方.当年轻代内存空间被用完时,就会触发垃 ...
- 大数据de 2文章
点击可免费试用网易有数 文章来源:网易有数的搭积木原则阐述 ,经作者文雯授权发布 wo ceceshi 相关文章:[推荐] SpringBoot入门(五)--自定义配置
- 「学习记录」《数值分析》第二章计算实习题(Python语言)
在假期利用Python完成了<数值分析>第二章的计算实习题,主要实现了牛顿插值法和三次样条插值,给出了自己的实现与调用Python包的实现--现在能搜到的基本上都是MATLAB版,或者是各 ...
- 【java并发编程实战】第七章:取消与关闭
停止线程的几种方式 一般的逻辑停止 public class ThreadInterruptTest { public static volatile boolean cancel = true; p ...
- 面向对象 公有私有 property classmethod staticmethod
接口类(抽象类)--------就是一种规范 面向对象的私有与公有 对于每一个类的成员而言都有两种形式: 公有成员,在任何地方都能访问 私有成员,只有在类的内部才能方法 私有成员和公有成员的访问限制不 ...
- kafka java动态获取topic并动态创建消费者
1.获取所有topic package com.example.demo; import java.io.IOException; import java.util.List; import org. ...
- 爬取图片过程遇到的ValueError: Missing scheme in request url: h 报错与解决方法
一 .scrapy整体框架 1.1 scrapy框架图 1.2 scrapy框架各结构解析 item:保存抓取的内容 spider:定义抓取内容的规则,也是我们主要编辑的文件 pipelines:管道 ...
- C# 结构类型与类的区别
结构类型是值类型:类是引用类型: 内存位置不同,结构类型在应用程序的堆栈中:类对象在托管中: 是否改变源对象
- Windows Server 2008 R2 WEB 服务器安全设置指南
http://wenku.baidu.com/view/9b66c51449649b6649d747a2.html?from=search http://wenku.baidu.com/view/84 ...