最短路径之迪杰斯特拉算法的Java实现
Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法。该算法被称为是“贪心算法”的成功典范。本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码。
一、知识准备
1、表示图的数据结构
用于存储图的数据结构有多种,本算法中笔者使用的是邻接矩阵。
图的邻接矩阵存储方式是用两个数组来表示图。一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息。
设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为:
从上面可以看出,无向图的边数组是一个对称矩阵。所谓对称矩阵就是n阶矩阵的元满足aij = aji。即从矩阵的左上角到右下角的主对角线为轴,右上角的元和左下角相对应的元全都是相等的。
从这个矩阵中,很容易知道图中的信息。
(1)要判断任意两顶点是否有边无边就很容易了;
(2)要知道某个顶点的度,其实就是这个顶点vi在邻接矩阵中第i行或(第i列)的元素之和;
(3)求顶点vi的所有邻接点就是将矩阵中第i行元素扫描一遍,arc[i][j]为1就是邻接点;
而有向图讲究入度和出度,顶点vi的入度为1,正好是第i列各数之和。顶点vi的出度为2,即第i行的各数之和。
有向图的定义也类似,故不做赘述。
2、单起点全路径
所谓单起点全路径,就是指在一个图中,从一个起点出发,到所有节点的最短路径。
3、图论的基本知识(读者需自行寻找相关资料)
4、互补松弛条件
设标量d1,d2,....,dN满足
dj<=di + aij, (i,j)属于A,
且P是以i1为起点ik为终点的路,如果
dj = di + aij, 对P的所有边(i, j)
成立,那么P是从i1到ik的最短路。其中,满足上面两式的被称为最短路问题的互补松弛条件。
二、算法思想
1、令G = (V,E)为一个带权无向图。G中若有两个相邻的节点,i和j。aij(在这及其后面都表示为下标,请注意)为节点i到节点j的权值,在本算法可以理解为距离。每个节点都有一个值di(节点标记)表示其从起点到它的某条路的距离。
2、算法初始有一个数组V用于储存未访问节点的列表,我们暂称为候选列表。选定节点1为起始节点。开始时,节点1的d1=0, 其他节点di=无穷大,V为所有节点。
初始化条件后,然后开始迭代算法,直到V为空集时停止。具体迭代步骤如下:
将d值最小的节点di从候选列表中移除。(本例中V的数据结构采用的是优先队列实现最小值出列,最好使用斐波那契对,在以前文章有过介绍,性能有大幅提示)。对于以该节点为起点的每一条边,不包括移除V的节点, (i, j)属于A, 若dj > di + aij(违反松弛条件),则令
dj = di + aij , (如果j已经从V中移除过,说明其最小距离已经计算出,不参与此次计算)
可以看到在算法的运算工程中,节点的d值是单调不增的
具体算法图解如下
三、代码实现
//接受一个有向图的权重矩阵,和一个起点编号start(从0编号,顶点存在数组中)
//返回一个int[] 数组,表示从start到它的最短路径长度
public static int[] Dijsktra(int[][]weight,int start){
int length = weight.length;
int[] shortPath = new int[length];//存放从start到各个点的最短距离
shortPath[0] = 0;//start到他本身的距离最短为0
String path[] = new String[length];//存放从start点到各点的最短路径的字符串表示
for(int i=0;i<length;i++){
path[i] = start+"->"+i;
}
int visited[] = new int[length];//标记当前该顶点的最短路径是否已经求出,1表示已经求出
visited[0] = 1;//start点的最短距离已经求出
for(int count = 1;count<length;count++){
int k=-1;
int dmin = Integer.MAX_VALUE;
for(int i=0;i<length;i++){
if(visited[i]==0 && weight[start][i]<dmin){
dmin = weight[start][i];
k=i;
}
}
//选出一个距离start最近的未标记的顶点 将新选出的顶点标记为以求出最短路径,且到start的最短路径为dmin。
shortPath[k] = dmin;
visited[k] = 1;
//以k为中间点,修正从start到未访问各点的距离
for(int i=0;i<length;i++){
if(visited[i]==0 && weight[start][k]+weight[k][i]<weight[start][i]){
weight[start][i] = weight[start][k]+weight[k][i];
path[i] = path[k]+"->"+i;
}
}
}
for(int i=0;i<length;i++){
System.out.println("从"+start+"出发到"+i+"的最短路径为:"+path[i]+"="+shortPath[i]);
}
return shortPath; }
这便是利用迪杰斯特拉算法实现最短路径的方法。
之后可以声明一个常量,例如:
static final int MAX = 10000;
然后在main方法里面建一个邻接矩阵,调用此方法即可。
public static void main(String[] args) {
int[][] weight = {
{0,3,2000,7,MAX},
{3,0,4,2,MAX},
{MAX,4,0,5,4},
{7,2,5,0,6},
{MAX,MAX,4,6,0}
};
int start = 0;
int[] dijsktra = Dijsktra(weight,start);
}
参考自:http://www.cnblogs.com/junyuhuang/p/4544747.html
最短路径之迪杰斯特拉算法的Java实现的更多相关文章
- 最短路径之迪杰斯特拉算法(Java)
1)Dijkstra算法适用于求图中两节点之间最短路径 2)Dijkstra算法设计比较巧妙的是:在求源节点到终结点自底向上的过程中,源节点到某一节点之间最短路径的确定上(这也是我之前苦于没有解决的地 ...
- c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法
c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法 图的最短路径的概念: 一位旅客要从城市A到城市B,他希望选择一条途中中转次数最少的路线.假设途中每一站都需要换车,则这个问题反映到图上就是 ...
- [从今天开始修炼数据结构]图的最短路径 —— 迪杰斯特拉算法和弗洛伊德算法的详解与Java实现
在网图和非网图中,最短路径的含义不同.非网图中边上没有权值,所谓的最短路径,其实就是两顶点之间经过的边数最少的路径:而对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,我们称路径上第 ...
- 数据结构---公交线路提示系统05(内附读取表格+迪杰斯特拉算法Java代码)
今天做的最多的事情就是纠错了,通过添加输出语句判断错误来源: 找到错误来源: wb = new XSSFWorkbook(input);//语句创建错误 网上查询发现是jar包的问题: 下图为poi的 ...
- Java 迪杰斯特拉算法实现查找最短距离
迪杰斯特拉算法 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是 ...
- C++迪杰斯特拉算法求最短路径
一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...
- 最短路径之迪杰斯特拉(Dijkstra)算法
迪杰斯特拉(Dijkstra)算法主要是针对没有负值的有向图,求解其中的单一起点到其他顶点的最短路径算法.本文主要总结迪杰斯特拉(Dijkstra)算法的原理和算法流程,最后通过程序实现在一个带权值的 ...
- 算法与数据结构(六) 迪杰斯特拉算法的最短路径(Swift版)
上篇博客我们详细的介绍了两种经典的最小生成树的算法,本篇博客我们就来详细的讲一下最短路径的经典算法----迪杰斯特拉算法.首先我们先聊一下什么是最短路径,这个还是比较好理解的.比如我要从北京到济南,而 ...
- 图->最短路径->单源最短路径(迪杰斯特拉算法Dijkstra)
文字描述 引言:如下图一个交通系统,从A城到B城,有些旅客可能关心途中中转次数最少的路线,有些旅客更关心的是节省交通费用,而对于司机,里程和速度则是更感兴趣的信息.上面这些问题,都可以转化为求图中,两 ...
随机推荐
- 汕头市队赛 SRM16 T2
描述 猫和老鼠,看过吧?猫来了,老鼠要躲进洞里.在一条数轴上,一共有n个洞,位置分别在xi,能容纳vi只老鼠.一共有m只老鼠位置分别在Xi,要躲进洞里,问所有老鼠跑进洞里的距离总和最小是多少. 输入格 ...
- 51nod数字1的数量
这道题瞎jbyy了很久 方法可能很奇怪... #include<cstdio> #include<cstring> #include<algorithm> #inc ...
- NGINX: 反向代理 websocket
参考: [ Using multiple nodes ] [ Nginx 官网 WebSocket proxying ] 关于 websocket 的介绍可以看阮大大的这篇 [ WebSocket 教 ...
- [ CodeVS冲杯之路 ] P2952
不充钱,你怎么AC? 题目:http://codevs.cn/problem/2952/ 题目讲一个细胞可分裂成 2 个,那么当前数目就是2a,a 为时间 然后 q 个细胞一起会死亡,也就是对 q 取 ...
- Python爬虫学习 - day1 - 爬取图片
利用Python完成简单的图片爬取 最近学习到了爬虫,瞬时觉得很高大上,想取什么就取什么,感觉要上天.这里分享一个简单的爬取汽车之家文章列表的图片教程,供大家学习. 需要的知识点储备 本次爬虫脚本依赖 ...
- Python 模拟SQL对文件进行增删改查
#!/usr/bin/env python # _*_ coding:UTF-8 _*_ # __auth__: Dalhhin # Python 3.5.2,Pycharm 2016.3.2 # 2 ...
- [Leetcode Week11]Kth Largest Element in an Array
Kth Largest Element in an Array 题解 题目来源:https://leetcode.com/problems/kth-largest-element-in-an-arra ...
- [Leetcode Week6]Linked List Cycle II
Linked List Cycle II 题解 题目来源:https://leetcode.com/problems/linked-list-cycle-ii/description/ Descrip ...
- UVALIVE 3939 Plucking fruits
并查集解决.代码跑的有够慢.应该可以通过边权排序优化. #include <map> #include <set> #include <list> #include ...
- 【Linux驱动学习】SD卡规范学习
摘要: 学习SD卡的相关规范,包括定义,硬件特性,数据传输,命令系统等.不涉及代码. 文章针对Linux驱动开发而写,以助于理解SD卡驱动,不会涉及过多硬件内容. 纲要: 1. SD卡介绍 2. SD ...