BZOJ2693: jzptab(莫比乌斯反演)
Time Limit: 10 Sec Memory Limit: 512 MB
Submit: 2068 Solved: 834
[Submit][Status][Discuss]
Description
Input
一个正整数T表示数据组数
接下来T行 每行两个正整数 表示N、M
Output
T行 每行一个整数 表示第i组数据的结果
Sample Input
4 5
Sample Output
HINT
T <= 10000
N, M<=10000000
HINT
Source
Orz gxz
这题好神仙啊,就是把这个换成了多组询问
我们可以继续利用上一个题的公式推
$f(n)$是两个积性函数的乘积,同样也是积性函数
考虑只有一个素因子时$f(n) = n * (1 - n)$
当$n$不为质数时$n = i * p$,此时$n$一定包含$p^2$这个因子,所以$f(n) = p * f(i)$
#include<cstdio>
#include<algorithm>
#define LL long long
using namespace std;
const int MAXN = 1e7 + , mod = ;
int T, N, M;
int tot, vis[MAXN];
LL f[MAXN], prime[MAXN];
void GetF(int N) {
f[] = ;
for(int i = ; i <= N; i++) {
if(!vis[i]) prime[++tot] = i, f[i] = (i - 1ll * i * i % mod + mod) % mod;
for(int j = ; j <= tot && i * prime[j] <= N; j++) {
vis[i * prime[j]] = ;
if(!(i % prime[j])) {
f[i * prime[j]] = f[i] * prime[j] % mod;
break;
} else f[i * prime[j]] = f[i] * f[prime[j]] % mod;
}
}
for(int i = ; i <= N; i++) f[i] = (f[i - ] + f[i] + mod) % mod;
}
LL S(LL x) {
return (x * (x + )) / % mod;
}
int main() {
scanf("%d", &T);
GetF(1e7 + );
while(T--) {
int N, M, last;
LL ans = ;
scanf("%d %d", &N, &M);
if(N > M) swap(N, M);
for(int i = ; i <= N; i = last + ) {
last = min(N / (N / i), M / (M / i));
ans = (ans + S(N / i) * S(M / i) % mod * (f[last] - f[i - ] + mod) % mod) % mod;
}
printf("%lld\n", ans); }
return ;
}
/*
2
4 5
123456 654321 */
BZOJ2693: jzptab(莫比乌斯反演)的更多相关文章
- bzoj2693 jzptab 莫比乌斯反演|题解
Description Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample Input 1 4 5 ...
- 【BZOJ2693】jzptab [莫比乌斯反演]
jzptab Time Limit: 10 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 求 Input 第一行一个 ...
- 【bzoj2693】jzptab 莫比乌斯反演+线性筛
题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- 【BZOJ】2693: jzptab 莫比乌斯反演
[题意]2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000. [算法]数论(莫比乌斯反演) [题解]由上一题, $ans=\sum_{g\leq min(n,m)}g\s ...
- BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1194 Solved: 455[Submit][Status][Discu ...
- BZOJ 2693: jzptab( 莫比乌斯反演 )
速度居然#2...目测是因为我没用long long.. 求∑ lcm(i, j) (1 <= i <= n, 1 <= j <= m) 化简之后就只须求f(x) = x∑u( ...
- luoguP1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题意 注:默认\(n\leqslant m\). 所求即为:\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 因为\(i*j=\gcd(i, ...
- [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演
---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...
随机推荐
- Linux下创建vue项目
前提:已经安装了node.js.cnpm 1.全局安装vue脚手架vue-cli:#cnpm install -g vue-cli 注意:全局安装没有建立软链接前是无法使用刚刚安装的vue命令的,所以 ...
- EM自动任务导致数据库缓慢
这两天客户抱怨数据库慢,查看性能什么的没发现什么异常.查看job发现一个内容为EMD_MAINTENANCE.EXECUTE_EM_DBMS_JOB_PROCS执行特别频繁.使用 EXEC DBMS_ ...
- POJ 2182 Lost Cows 【树状数组+二分】
题目链接:http://poj.org/problem?id=2182 Lost Cows Time Limit: 1000MS Memory Limit: 65536K Total Submis ...
- P1272
P1272 重建道路 题目描述 一场可怕的地震后,人们用N个牲口棚(1≤N≤150,编号1..N)重建了农夫John的牧场.由于人们没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是惟 ...
- 【luogu P3390 矩阵快速幂】 模板
题目链接:https://www.luogu.org/problemnew/show/P3390 首先要明白矩阵乘法是什么 对于矩阵A m*p 与 B p*n 的矩阵 得到C m*n 的矩阵 矩阵 ...
- Android学习笔记_20_访问应用权限汇总
<manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com. ...
- 使用MVCPager做AJAX分页所走的弯路
使用MVCPager做AJAX分页所需要注意的地方: 1.版本问题,推荐使用2.0以上,对ajax支持才比较的好了 2.当需要使用页索引输入或下拉框以及使用Ajax分页模式时,必须用Html.Regi ...
- o'Reill的SVG精髓(第二版)学习笔记——第七章
第七章:路径 所有描述轮廓的数据都放在<path>元素的d属性中(d是data的缩写).路径数据包括单个字符的命令,比如M表示moveto,L表示lineto.接着是该命令的坐标信息. 7 ...
- vue使用v-for循环,动态修改element-ui的el-switch
在使用element-ui的el-switch中,因为要用v-for循环,一直没有成功,后来仔细查看文档,发现可以这样写 <el-switch v-for="(item, key) i ...
- Python基础—10-常用模块:time,calendar,datetime
#常用模块 time sleep:休眠指定的秒数(可以是小数) time:获取时间戳(从1970-01-01 00:00:00到此刻的秒数) localtime:将一个时间戳转换为一个对象,对象中包含 ...