题目

这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色。最左边是白色棋子,最右边

是黑色棋子,相邻的棋子颜色不同。



小奇可以移动白色棋子,提比可以移动黑色的棋子,它们每次操作可以移动1到d个棋子。每当移动某一个棋子时,

这个棋子不能跨越两边的棋子,当然也不可以出界。当谁不可以操作时,谁就失败了。小奇和提比轮流操作,现在

小奇先移动,有多少种初始棋子的布局会使它有必胜策略?

输入格式

共一行,三个数,n,k,d。对于100%的数据,有1<=d<=k<=n<=10000, k为偶数,k<=100。

输出格式

输出小奇胜利的方案总数。答案对1000000007取模。

输入样例

10 4 2

输出样例

182

题解

面对各种数学轰炸。。跪了。

前置知识:

Nimk游戏

Nim游戏基础上,每次可以取之多d堆

先手必败条件:每堆石子转成二进制,各个位的和都为(d + 1)的倍数

例如可以取2次,石子数:111、101、110、011【二进制】

每一位都有2+1=3个1,所以先手必败

本题

黑白棋子相间分布,白棋右移,黑棋左移,每对棋子的间隔长就相当于石子数,而每次可以操作d次,就相当于Nimk游戏

求方案数

一共有K/2堆石子,总数不超过N - K个

首先,总的方案数为C(N,K),我们尝试求出必败的方案数,作差

令f[i][j]表示每堆石子的二进制表示中最高位为i位【从0开始算】,总共有j和石子的方案数

那么有

f[i+1][j+x∗(d+1)∗2i]+=f[i][j]∗C(K/2,x∗(D+1))

原理:最高第i+1位的方案由最高第i位转移而来,每次同时加上(D+1)个1,可枚举x,表示加上x个(D+1)来进行转移,而每次加入x∗(D+1)组石子,又有C(K/2,x∗(D+1))种方法

【模型的转化,dp的应用,组合数的使用】

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 10005,maxm = 105,INF = 1000000000,P = 1000000007;
LL C[maxn][maxm],f[20][maxn];
int main(){
LL N,K,D;
cin>>N>>K>>D;
for (int i = 0; i <= N; i++){
C[i][0] = 1;
for (int j = 1; j <= i && j <= K; j++)
C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % P;
}
f[0][0] = 1;
for (LL i = 0; i <= 16; i++)
for (LL j = 0; j <= N - K; j++)
for (LL x = 0; x * (D + 1) <= K / 2 && x * (D + 1) * (1ll << i) + j <= N - K; x++)
f[i + 1][j + x * (D + 1) * (1ll << i)] =
(f[i + 1][j + x * (D + 1) * (1ll << i)] + f[i][j] * C[K/2][x * (D + 1)]) % P;
LL ans = C[N][K];
for (int i = 0; i <= N - K; i++)
ans = (ans - f[16][i] * C[N - K - i + K / 2][K / 2] % P) % P;
cout<<(ans + P) % P<<endl;
return 0;
}

BZOJ4550 小奇的博弈 【Nimk游戏 + dp + 组合数】的更多相关文章

  1. BZOJ4550: 小奇的博弈(NIMK博弈& 组合数& DP)

    4550: 小奇的博弈 Time Limit: 2 Sec  Memory Limit: 256 MBSubmit: 159  Solved: 104[Submit][Status][Discuss] ...

  2. BZOJ2281[Sdoi2011]黑白棋&BZOJ4550小奇的博弈——DP+nimk游戏

    题目描述 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色 ...

  3. bzoj4550 小奇的博弈

    我看出了是个 Nimk 问题.... dp我明白意思,我也会推组合数.... 但是...神tm统计答案啊...蒟蒻不会~

  4. bzoj 4550: 小奇的博弈【博弈论+dp】

    首先看出终止状态是全都堆在左边或者右边,然后发现黑的向左白的向右是最优策略(如果不能这样了也就该输了) 然后就不会了 参考 http://www.cnblogs.com/CQzhangyu/p/770 ...

  5. 【BZOJ4550】小奇的博弈 博弈论

    [BZOJ4550]小奇的博弈 Description 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色.最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同.   小 ...

  6. 【bzoj4550】小奇的博弈 博弈论+dp

    题目描述 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色.最左边是白色棋子,最右边 是黑色棋子,相邻的棋子颜色不同.   小奇可以移动白色棋子,提比可以移动黑色的棋子, ...

  7. 小奇的仓库(树形DP)

    「题目背景」 小奇采的矿实在太多了,它准备在喵星系建个矿石仓库.令它无语的是,喵星系的货运飞船引擎还停留在上元时代! 「问题描述」 喵星系有n个星球,星球以及星球间的航线形成一棵树. 从星球a到星球b ...

  8. [CSP-S模拟测试]:小奇的矩阵(matrix)(DP+数学)

    题目背景 小奇总是在数学课上思考奇怪的问题. 题目描述 给定一个$n\times m$的矩阵,矩阵中的每个元素$a_{i,j}$为正整数.接下来规定:    $1.$合法的路径初始从矩阵左上角出发,每 ...

  9. 【HMOI】小C的填数游戏 DP+线段树维护

    [题目描述] 一个长为n的序列,每个元素有一个a[i],b[i],a[i]为0||1,每个点和他相邻的两个点分别有两条边,权值为cost1[i],cost2[i],对于每个区间l,r,我们可以给每一个 ...

随机推荐

  1. npm run build打包后自定义动画没有执行

    问题描述:在vue项目中,当你自己写了一些自定义动画效果,然后你npm run build打包项目放到线上环境后,发现动画并没有效果. 解决办法:在vue项目中找到build文件夹下的vue-load ...

  2. php+sqlserver处理读取decimal 类型数据,不满1的数字会去掉0的问题

    php+sqlserver处理读取decimal 类型数据,如果数据不满1,会去掉0的问题.比如读取的数据是 0.05,会显示 .05 function convert_number($number) ...

  3. Hue联合(hdfs yarn hive) 后续......................

    1.启动hdfs,yarn start-all.sh 2.启动hive $ bin/hive $ bin/hive --service metastore & $ bin/hive --ser ...

  4. Hadoop(19)-MapReduce框架原理-Combiner合并

    1. Combiner概述 2. 自定义Combiner实现步骤 1). 定义一个Combiner继承Reducer,重写reduce方法 public class WordcountCombiner ...

  5. jmeter 插件安装

    1.下载Plugins Manager插件 打开下载插件地址:https://jmeter-plugins.org/ 2.将下载的plugins-manager.jar包复制到Jmeter安装目录,l ...

  6. WHERE条件中or与union引起的全表扫描的问题

    说起数据库的SQL语句执行效率的问题,就不得不提where条件语句中的or(逻辑或)引起的全表扫描问题,从而导致效率下降. 在以往绝大多数的资料中,大多数人的建议是使用 union 代替 or ,以解 ...

  7. 抽象类实验:SIM卡抽象

    抽象SIM: package sim_package; public abstract class SIM { public abstract String giveNumber(); public ...

  8. pxe无人值守安装linux机器笔记----摘抄

    1. 基建工作 1.关闭防火墙 a)service iptables stop b)service ip6tables stop c)chkconfig iptables off d)chkconfi ...

  9. awk用法介绍

    Awk 程序的结构如下: awk 'BEGIN{ print "start" } pattern { commands } END{ print "end" } ...

  10. CWindowWnd类源码分析

    CWindowWnd代码在UIBase.h和UIBase.cpp文件里.主要实现的是一个基本窗口的创建与消息处理. 相关代码: 头文件: class UILIB_API CWindowWnd { pu ...