BZOJ4550 小奇的博弈 【Nimk游戏 + dp + 组合数】
题目
这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色。最左边是白色棋子,最右边
是黑色棋子,相邻的棋子颜色不同。
小奇可以移动白色棋子,提比可以移动黑色的棋子,它们每次操作可以移动1到d个棋子。每当移动某一个棋子时,
这个棋子不能跨越两边的棋子,当然也不可以出界。当谁不可以操作时,谁就失败了。小奇和提比轮流操作,现在
小奇先移动,有多少种初始棋子的布局会使它有必胜策略?
输入格式
共一行,三个数,n,k,d。对于100%的数据,有1<=d<=k<=n<=10000, k为偶数,k<=100。
输出格式
输出小奇胜利的方案总数。答案对1000000007取模。
输入样例
10 4 2
输出样例
182
题解
面对各种数学轰炸。。跪了。
前置知识:
Nimk游戏
Nim游戏基础上,每次可以取之多d堆
先手必败条件:每堆石子转成二进制,各个位的和都为(d + 1)的倍数
例如可以取2次,石子数:111、101、110、011【二进制】
每一位都有2+1=3个1,所以先手必败
本题
黑白棋子相间分布,白棋右移,黑棋左移,每对棋子的间隔长就相当于石子数,而每次可以操作d次,就相当于Nimk游戏
求方案数
一共有K/2堆石子,总数不超过N - K个
首先,总的方案数为C(N,K),我们尝试求出必败的方案数,作差
令f[i][j]表示每堆石子的二进制表示中最高位为i位【从0开始算】,总共有j和石子的方案数
那么有
f[i+1][j+x∗(d+1)∗2i]+=f[i][j]∗C(K/2,x∗(D+1))
原理:最高第i+1位的方案由最高第i位转移而来,每次同时加上(D+1)个1,可枚举x,表示加上x个(D+1)来进行转移,而每次加入x∗(D+1)组石子,又有C(K/2,x∗(D+1))种方法
【模型的转化,dp的应用,组合数的使用】
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 10005,maxm = 105,INF = 1000000000,P = 1000000007;
LL C[maxn][maxm],f[20][maxn];
int main(){
LL N,K,D;
cin>>N>>K>>D;
for (int i = 0; i <= N; i++){
C[i][0] = 1;
for (int j = 1; j <= i && j <= K; j++)
C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % P;
}
f[0][0] = 1;
for (LL i = 0; i <= 16; i++)
for (LL j = 0; j <= N - K; j++)
for (LL x = 0; x * (D + 1) <= K / 2 && x * (D + 1) * (1ll << i) + j <= N - K; x++)
f[i + 1][j + x * (D + 1) * (1ll << i)] =
(f[i + 1][j + x * (D + 1) * (1ll << i)] + f[i][j] * C[K/2][x * (D + 1)]) % P;
LL ans = C[N][K];
for (int i = 0; i <= N - K; i++)
ans = (ans - f[16][i] * C[N - K - i + K / 2][K / 2] % P) % P;
cout<<(ans + P) % P<<endl;
return 0;
}
BZOJ4550 小奇的博弈 【Nimk游戏 + dp + 组合数】的更多相关文章
- BZOJ4550: 小奇的博弈(NIMK博弈& 组合数& DP)
4550: 小奇的博弈 Time Limit: 2 Sec Memory Limit: 256 MBSubmit: 159 Solved: 104[Submit][Status][Discuss] ...
- BZOJ2281[Sdoi2011]黑白棋&BZOJ4550小奇的博弈——DP+nimk游戏
题目描述 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色 ...
- bzoj4550 小奇的博弈
我看出了是个 Nimk 问题.... dp我明白意思,我也会推组合数.... 但是...神tm统计答案啊...蒟蒻不会~
- bzoj 4550: 小奇的博弈【博弈论+dp】
首先看出终止状态是全都堆在左边或者右边,然后发现黑的向左白的向右是最优策略(如果不能这样了也就该输了) 然后就不会了 参考 http://www.cnblogs.com/CQzhangyu/p/770 ...
- 【BZOJ4550】小奇的博弈 博弈论
[BZOJ4550]小奇的博弈 Description 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色.最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 ...
- 【bzoj4550】小奇的博弈 博弈论+dp
题目描述 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色.最左边是白色棋子,最右边 是黑色棋子,相邻的棋子颜色不同. 小奇可以移动白色棋子,提比可以移动黑色的棋子, ...
- 小奇的仓库(树形DP)
「题目背景」 小奇采的矿实在太多了,它准备在喵星系建个矿石仓库.令它无语的是,喵星系的货运飞船引擎还停留在上元时代! 「问题描述」 喵星系有n个星球,星球以及星球间的航线形成一棵树. 从星球a到星球b ...
- [CSP-S模拟测试]:小奇的矩阵(matrix)(DP+数学)
题目背景 小奇总是在数学课上思考奇怪的问题. 题目描述 给定一个$n\times m$的矩阵,矩阵中的每个元素$a_{i,j}$为正整数.接下来规定: $1.$合法的路径初始从矩阵左上角出发,每 ...
- 【HMOI】小C的填数游戏 DP+线段树维护
[题目描述] 一个长为n的序列,每个元素有一个a[i],b[i],a[i]为0||1,每个点和他相邻的两个点分别有两条边,权值为cost1[i],cost2[i],对于每个区间l,r,我们可以给每一个 ...
随机推荐
- PHP(YII2实现) 微信网页授权
参考地址 https://mp.weixin.qq.com/wiki?t=resource/res_main&id=mp1421140842 实现步骤分析: 获取code->access ...
- 08 datetime与logging模块(进阶)
datetime与logging模块 阶段一:日期与时间 1.datetime 模块中 主要类: 类名 功能说明 date 日期对象,常用的属性有year, month, day time 时间对象h ...
- java 堆栈内存分析详解
计算机术语里面堆和栈代表不同的存储结构:stack-栈:heap-堆 所以java虚拟机(JVM)中堆和栈是两种内存 堆.栈对比 对比点 堆 栈 JVM中的功能 内存数据区 内存指令区 动静态 运行时 ...
- IdFTP中FEAT命令的问题
IdFTP控件很方便开发FTP客户端,用于传输文件.一次笔者的一个在阿里云的服务器突发故障,显示无法登陆FTP,而使用其他客户端(如FlashFxp)经过该项目设置,又可正常使用. 查询后说是FEAT ...
- 9.Mongodb与python交互
1.与python交互 点击查看官方文档 安装python包 进入虚拟环境 sudo pip install pymongo 或源码安装 python setup.py 引入包pymongo impo ...
- Error: Error while compiling statement: FAILED: SemanticException Unable to determine if hdfs://hadoopNode2:8020/user/hive/warehouse/test is encrypted...
1.发现问题: 在hive客户端或者beeline查询hive表时候报错: 根据报错信息查看,是在集群namenode做了HA之后,产生的hdfs路径不对的问题: 2.解决问题,修改hive元数据my ...
- 【多线程】 Task
[多线程] Task 一. 常用方法: 1. ContinueWith : 当前 Task 完成后, 执行传入的 Task 2. Delay : 创建一个等待的 Task,只有在调用 Wait 方法时 ...
- Django笔记 —— 基础部分总结
最近在学习Django,打算玩玩网页后台方面的东西,因为一直很好奇但却没怎么接触过.Django对我来说是一个全新的内容,思路想来也是全新的,或许并不能写得很明白,所以大家就凑合着看吧- 本篇笔记(其 ...
- (4)分布式下的爬虫Scrapy应该如何做-规则自动爬取及命令行下传参
本次探讨的主题是规则爬取的实现及命令行下的自定义参数的传递,规则下的爬虫在我看来才是真正意义上的爬虫. 我们选从逻辑上来看,这种爬虫是如何工作的: 我们给定一个起点的url link ,进入页面之后提 ...
- MySQL高可用之PXC安装部署
Preface Today,I'm gonna implement a PXC,Let's see the procedure. Framework Hostname IP P ...