题目链接

这是一道假题,表面上看起来,好像使用了什么奇妙的操作,其实就是一个无脑暴力

我们会发现,即使是\(1e18\),在开方\(6\)次之后也已经变成了\(1\),而\(1\)再怎么开方还是\(1\),也就是说,每个数最多被修改\(6\)次,那么我们记录区间内是否都是\(1\),如果都是\(1\)则无需修改,然后对于需要修改的区间,我们直接暴力修改到底即可,这样复杂度就是\(O(n \lg n)\)常数在6左右,完全不用担心

下面放代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cctype>
#include<cmath>
#define ll long long
#define gc getchar
#define maxn 100005
using namespace std; inline ll read(){
ll a=0;int f=0;char p=gc();
while(!isdigit(p)){f|=p=='-';p=gc();}
while(isdigit(p)){a=(a<<3)+(a<<1)+(p^48);p=gc();}
return f?-a:a;
}int T,n,m; struct ahaha{
ll v,v1;
}t[maxn<<2];
#define lc p<<1
#define rc p<<1|1
inline void pushup(int p){
t[p].v=t[lc].v+t[rc].v;
t[p].v1=max(t[lc].v1,t[rc].v1);
}
void build(int p,int l,int r){
if(l==r){t[p].v=t[p].v1=read();return;}
int m=l+r>>1;
build(lc,l,m);build(rc,m+1,r);
pushup(p);
}
void update(int p,int l,int r,int L,int R){
if(l>R||r<L)return;
if(t[p].v1==1)return;
if(l==r){t[p].v=t[p].v1=sqrt(t[p].v1);return;}
int m=l+r>>1;
update(lc,l,m,L,R);update(rc,m+1,r,L,R);
pushup(p);
}
ll query(int p,int l,int r,int L,int R){
if(l>R||r<L)return 0;
if(L<=l&&r<=R)return t[p].v;
int m=l+r>>1;
return query(lc,l,m,L,R)+query(rc,m+1,r,L,R);
} inline void solve_1(){
int x=read(),y=read();if(x>y)swap(x,y);
update(1,1,n,x,y);
}
inline void solve_2(){
int x=read(),y=read();if(x>y)swap(x,y);
printf("%lld\n",query(1,1,n,x,y));
} int main(){
while(~scanf("%d",&n)){
printf("Case #%d:\n",++T);
build(1,1,n);
m=read();
while(m--){
int zz=read();
switch(zz){
case 0:solve_1();break;
case 1:solve_2();break;
}
}
puts("");
}
return 0;
}

SP2713 GSS4的更多相关文章

  1. 线段树 SP2713 GSS4 - Can you answer these queries IV暨 【洛谷P4145】 上帝造题的七分钟2 / 花神游历各国

    SP2713 GSS4 - Can you answer these queries IV 「题意」: n 个数,每个数在\(10^{18}\) 范围内. 现在有「两种」操作 0 x y把区间\([x ...

  2. SP2713 GSS4 - Can you answer these queries IV(线段树)

    传送门 解题思路 大概就是一个数很少次数的开方会开到\(1\),而\(1\)开方还是\(1\),所以维护一个和,维护一个开方标记,维护一个区间是否全部为\(1/0\)的标记.然后每次修改时先看是否有全 ...

  3. 【SP2713 GSS4 - Can you answer these queries IV】 题解

    题目链接:https://www.luogu.org/problemnew/show/SP2713 真暴力啊. 开方你开就是了,开上6次就都没了. #include <cmath> #in ...

  4. SP2713 GSS4 - Can you answer these queries IV

    题目大意 \(n\) 个数,和在\(10^{18}\)范围内. 也就是\(\sum~a_i~\leq~10^{18}\) 现在有两种操作 0 x y 把区间[x,y]内的每个数开方,下取整 1 x y ...

  5. SP2713 GSS4 - Can you answer these queries IV 分块

    问题描述 LG-SP2713 题解 分块,区间开根. 如果一块的最大值是 \(1\) ,那么这个块就不用开根了. 如果最大值不是 \(1\) ,直接暴力开就好了. \(\mathrm{Code}\) ...

  6. 洛谷P4145 上帝造题的七分钟2 / 花神游历各国(重题:洛谷SP2713 GSS4 - Can you answer these queries IV)

    题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是便有了对一段 ...

  7. 有趣的线段树模板合集(线段树,最短/长路,单调栈,线段树合并,线段树分裂,树上差分,Tarjan-LCA,势能线段树,李超线段树)

    线段树分裂 以某个键值为中点将线段树分裂成左右两部分,应该类似Treap的分裂吧(我菜不会Treap).一般应用于区间排序. 方法很简单,就是把分裂之后的两棵树的重复的\(\log\)个节点新建出来, ...

  8. 题解【SP2713】GSS4 - Can you answer these queries IV

    题目描述 You are given a sequence \(A\) of \(N(N \leq 100,000)\) positive integers. There sum will be le ...

  9. 「SP2713」GSS4 - Can you answer these queries IV

    传送门 Luogu 解题思路 区间开方以及区间求和. 考虑用线段树来做. 开方操作看似没有任何结合律可言,但这题有另外一个性质: 一个数的初始值不超过 \(10^{18}\) ,而这个数被开方6次左右 ...

随机推荐

  1. js 获取当前页url网址信息

    转载地址:js如何准确获取当前页面url网址信息 摘录: 举例一个URL,然后获得它的各个组成部分:http://i.cnblogs.com/EditPosts.aspx?opt=1 1.window ...

  2. IDEA创建Scala项目

    一.安装插件 见Scala入门篇 二.新建项目 选择new project,其中SBT相当于精简版的maven,其他的待补充.这里选择IDEA 填写信息,选择Scala SDK 在src目录下新建Sc ...

  3. Java基础—基础语法与常用命令

    一.基础语法 1.case不加break会有穿透效果 根据阿里规范,严禁省略default语句,即使它一句话也没有 2.for循环执行顺序: for(初始化1;条件2;迭代运算3){ 循环体4: } ...

  4. [Oracle]如果误删了某个数据文件,又没有被备份,能否恢复?

    如果你有从这个数据文件创建之前,直到现在的,所有的ArchiveLog 和 Online REDO,是有可能进行恢复的. 执行: RMAN> restore datafile <filei ...

  5. TLV5620参考电压的问题

    1. TLV5620参考电压的,上面红线的VID的意思应该是引脚(REFA-REFD)输入的电压值(3.3V),下面的应该是实际参考值,根据实际测试VID=3.3V的时候,Vref=2.2V,至于为什 ...

  6. mybatis 异常 too many connections 解决方案 mysql

    参考: https://blog.csdn.net/u011628250/article/details/54017481 https://www.cnblogs.com/baby123/p/5710 ...

  7. JavaScript快速入门-简介

    一.JavaScript历史(摘自w3school) JavaScript 是因特网上最流行的脚本语言,它存在于全世界所有 Web 浏览器中,能够增强用户与 Web 站点和 Web 应用程序之间的交互 ...

  8. More Effective C++ Item14:明智运用exception specifications

    使用exception specifications你必须非常仔细去确保,函数调用的子函数.注册的回调函数不会违背约定.而设计模板内部的异常更难确保. 设计回调机制的时候,如果调用方规定了不抛出异常, ...

  9. OPPO A7X 刷机小结

    OPPO A7X 刷机小结: 概述:根据网上找到的教程(MTK模式刷机教程),没有成功.在QQ上询问一位提供刷机服务的大神,说是只有老版本才能刷. 操作步骤: 刷机工具: MediaTek SP Fl ...

  10. 毕业回馈-89c52之最小系统

    今天分享一个51单片机最小系统的电路板设计(原理图+PCB) 技术手册上面对于51单片机最小系统作如下要求: 下载电路主要有以下几种: 采用RS-232转换器下载:(R1OUT-P3.0;T1IN-P ...