SP2713 GSS4
这是一道假题,表面上看起来,好像使用了什么奇妙的操作,其实就是一个无脑暴力
我们会发现,即使是\(1e18\),在开方\(6\)次之后也已经变成了\(1\),而\(1\)再怎么开方还是\(1\),也就是说,每个数最多被修改\(6\)次,那么我们记录区间内是否都是\(1\),如果都是\(1\)则无需修改,然后对于需要修改的区间,我们直接暴力修改到底即可,这样复杂度就是\(O(n \lg n)\)常数在6左右,完全不用担心
下面放代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cctype>
#include<cmath>
#define ll long long
#define gc getchar
#define maxn 100005
using namespace std;
inline ll read(){
ll a=0;int f=0;char p=gc();
while(!isdigit(p)){f|=p=='-';p=gc();}
while(isdigit(p)){a=(a<<3)+(a<<1)+(p^48);p=gc();}
return f?-a:a;
}int T,n,m;
struct ahaha{
ll v,v1;
}t[maxn<<2];
#define lc p<<1
#define rc p<<1|1
inline void pushup(int p){
t[p].v=t[lc].v+t[rc].v;
t[p].v1=max(t[lc].v1,t[rc].v1);
}
void build(int p,int l,int r){
if(l==r){t[p].v=t[p].v1=read();return;}
int m=l+r>>1;
build(lc,l,m);build(rc,m+1,r);
pushup(p);
}
void update(int p,int l,int r,int L,int R){
if(l>R||r<L)return;
if(t[p].v1==1)return;
if(l==r){t[p].v=t[p].v1=sqrt(t[p].v1);return;}
int m=l+r>>1;
update(lc,l,m,L,R);update(rc,m+1,r,L,R);
pushup(p);
}
ll query(int p,int l,int r,int L,int R){
if(l>R||r<L)return 0;
if(L<=l&&r<=R)return t[p].v;
int m=l+r>>1;
return query(lc,l,m,L,R)+query(rc,m+1,r,L,R);
}
inline void solve_1(){
int x=read(),y=read();if(x>y)swap(x,y);
update(1,1,n,x,y);
}
inline void solve_2(){
int x=read(),y=read();if(x>y)swap(x,y);
printf("%lld\n",query(1,1,n,x,y));
}
int main(){
while(~scanf("%d",&n)){
printf("Case #%d:\n",++T);
build(1,1,n);
m=read();
while(m--){
int zz=read();
switch(zz){
case 0:solve_1();break;
case 1:solve_2();break;
}
}
puts("");
}
return 0;
}
SP2713 GSS4的更多相关文章
- 线段树 SP2713 GSS4 - Can you answer these queries IV暨 【洛谷P4145】 上帝造题的七分钟2 / 花神游历各国
SP2713 GSS4 - Can you answer these queries IV 「题意」: n 个数,每个数在\(10^{18}\) 范围内. 现在有「两种」操作 0 x y把区间\([x ...
- SP2713 GSS4 - Can you answer these queries IV(线段树)
传送门 解题思路 大概就是一个数很少次数的开方会开到\(1\),而\(1\)开方还是\(1\),所以维护一个和,维护一个开方标记,维护一个区间是否全部为\(1/0\)的标记.然后每次修改时先看是否有全 ...
- 【SP2713 GSS4 - Can you answer these queries IV】 题解
题目链接:https://www.luogu.org/problemnew/show/SP2713 真暴力啊. 开方你开就是了,开上6次就都没了. #include <cmath> #in ...
- SP2713 GSS4 - Can you answer these queries IV
题目大意 \(n\) 个数,和在\(10^{18}\)范围内. 也就是\(\sum~a_i~\leq~10^{18}\) 现在有两种操作 0 x y 把区间[x,y]内的每个数开方,下取整 1 x y ...
- SP2713 GSS4 - Can you answer these queries IV 分块
问题描述 LG-SP2713 题解 分块,区间开根. 如果一块的最大值是 \(1\) ,那么这个块就不用开根了. 如果最大值不是 \(1\) ,直接暴力开就好了. \(\mathrm{Code}\) ...
- 洛谷P4145 上帝造题的七分钟2 / 花神游历各国(重题:洛谷SP2713 GSS4 - Can you answer these queries IV)
题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是便有了对一段 ...
- 有趣的线段树模板合集(线段树,最短/长路,单调栈,线段树合并,线段树分裂,树上差分,Tarjan-LCA,势能线段树,李超线段树)
线段树分裂 以某个键值为中点将线段树分裂成左右两部分,应该类似Treap的分裂吧(我菜不会Treap).一般应用于区间排序. 方法很简单,就是把分裂之后的两棵树的重复的\(\log\)个节点新建出来, ...
- 题解【SP2713】GSS4 - Can you answer these queries IV
题目描述 You are given a sequence \(A\) of \(N(N \leq 100,000)\) positive integers. There sum will be le ...
- 「SP2713」GSS4 - Can you answer these queries IV
传送门 Luogu 解题思路 区间开方以及区间求和. 考虑用线段树来做. 开方操作看似没有任何结合律可言,但这题有另外一个性质: 一个数的初始值不超过 \(10^{18}\) ,而这个数被开方6次左右 ...
随机推荐
- 七,ESP8266-UDP(基于Lua脚本语言)
https://www.cnblogs.com/yangfengwu/p/7533302.html 那天朋友问我为什么有UDP Sever 和 UDP Client ,,我说:每个人想的不一样,设 ...
- SAP函数 LAST_DAY_OF_MONTHS 获取月末最后一天日期
DATA LAST_DATE TYPE SY-DATUM. CALL FUNCTION 'LAST_DAY_OF_MONTHS' EXPORTING day_in = sy-datum IMPORTI ...
- 大数据入门第二十四天——SparkStreaming(二)与flume、kafka整合
前一篇中数据源采用的是从一个socket中拿数据,有点属于“旁门左道”,正经的是从kafka等消息队列中拿数据! 主要支持的source,由官网得知如下: 获取数据的形式包括推送push和拉取pull ...
- 网络对抗技术 2017-2018-2 20155215 Exp9 Web安全基础
1.实践过程 前期准备:WebGoat WebGoat分为简单版和开发板,简单版是个Java的Jar包,只需要有Java环境即可,我们在命令行里执行java -jar webgoat-containe ...
- WPF编程,通过DoubleAnimation控制图片的透明度,将重叠的图片依次显示。
原文:WPF编程,通过DoubleAnimation控制图片的透明度,将重叠的图片依次显示. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307 ...
- 2017战略No.2:开始电子化记账
一.懒散的4年 大学毕业后,就没有怎么记账了. 自己花的钱,心里有个大概,但是不能算得很具体. 比如说,2016年,又没有攒几个钱,心里多少有点压抑. 大脑去算账,只能算房租吃饭等金额较大的开销,更多 ...
- 【Android UI设计与开发】第02期:引导界面(二)使用ViewPager实现欢迎引导页面
本系列文章都会以一个程序的实例开发为主线来进行讲解,以求达到一个循序渐进的学习效果,这样更能加深大家对于程序为什么要这样写的用意,理论加上实际的应用才能达到事半功倍的效果,不是吗? 最下方有源码的下载 ...
- 【Direct2D1.1初探】Direct2D特效概览
转载请注明出处:http://www.cnblogs.com/Ray1024 一.概述 Direct2D是一个基于Direct3D的2D图形API,可以利用硬件加速特性来提供高性能高质量的2D渲染.但 ...
- PWM输出
PWM(Pulse Width Modulation),脉冲宽度调制. 脉冲的频率由ARR控制,ARR越大频率越小:占空比由CCRx控制,CCRx越小占空比越大. 捕获/比较通道的输出部分(通道1) ...
- 基于神念TGAM的脑波小车(1)
作者声明:此博客是作者的毕设心得,拿来分享. 拿到模块,在网上查了一圈,发现基本没什么有用的资料,有也是一些废话,经过我几个月的攻克,现在已初步搞定,分享给大家. 废话不多说,直接步入正题. 这是通过 ...