DQN发展历程(一)

DQN发展历程(二)

DQN发展历程(三)

DQN发展历程(四)

DQN发展历程(五)

马尔可夫理论

马尔可夫性质

  • P[St+1 | St] = P[St+1 | S1,...,St]
  • 给定当前状态 St ,过去的状态可以不用考虑
  • 当前状态 St 可以代表过去的所有状态
  • 给定当前状态的条件下,未来的状态和过去的状态相互独立。

马尔可夫过程(MP)

  • 形式化地描述了强化学习的环境。
  • 包括二元组(S,P)
  • 根据给定的转移概率矩阵P,从当前状态St转移到下一状态St+1,
  • 基于模型的(Model-based):事先给出了转移概率矩阵P

马尔可夫奖励过程(MRP)

  • 和马尔可夫过程相比,加入了奖励r,加入了折扣因子gamma,gamma在0~1之间。
  • 马尔可夫奖励过程是一个四元组⟨S, P, R, γ⟩
  • 需要折扣因子的原因是
    • 使未来累积奖励在数学上易于计算
    • 由于可能经过某些重复状态,避免累积奖励的计算成死循环
    • 用于表示未来的不确定性
    • gamma越大表示越看中未来的奖励

值函数(value function)

  • 引入了值函数(value function),给每一个状态一个值V,以从当前状态St到评估未来的目标G的累积折扣奖励的大小

MRP求解

  • v = R + γPv (矩阵形式)
  • 直接解出上述方程时间复杂度O(n^3), 只适用于一些小规模问题

马尔可夫决策过程(MDP)

  • 加入了一个动作因素a,用于每个状态的决策
  • MDP是一个五元组⟨S, A, P, R, γ⟩
  • 策略policy是从S到A的一个映射

效用函数

  • 相比于值函数,加入了一个动作因素

优化的值函数

  • 为了求最佳策略,在值函数求解时,选择一个最大的v来更新当前状态对应的v

贝尔曼等式

  • 和值函数的求解方法相比,不需要从当前状态到目标求解,只需要从当前状态到下一状态即可(根据递推公式)

参考

david siver 课程

https://home.cnblogs.com/u/pinard/

DQN(Deep Reiforcement Learning) 发展历程(一)的更多相关文章

  1. DQN(Deep Reiforcement Learning) 发展历程(五)

    目录 值函数的近似 DQN Nature DQN DDQN Prioritized Replay DQN Dueling DQN 参考 DQN发展历程(一) DQN发展历程(二) DQN发展历程(三) ...

  2. DQN(Deep Reiforcement Learning) 发展历程(三)

    目录 不基于模型(Model-free)的预测 蒙特卡罗方法 时序差分方法 多步的时序差分方法 参考 DQN发展历程(一) DQN发展历程(二) DQN发展历程(三) DQN发展历程(四) DQN发展 ...

  3. DQN(Deep Reiforcement Learning) 发展历程(四)

    目录 不基于模型的控制 选取动作的方法 在策略上的学习(on-policy) 不在策略上的学习(off-policy) 参考 DQN发展历程(一) DQN发展历程(二) DQN发展历程(三) DQN发 ...

  4. DQN(Deep Reiforcement Learning) 发展历程(二)

    目录 动态规划 使用条件 分类 求解方法 参考 DQN发展历程(一) DQN发展历程(二) DQN发展历程(三) DQN发展历程(四) DQN发展历程(五) 动态规划 动态规划给出了求解强化学习的一种 ...

  5. [DQN] What is Deep Reinforcement Learning

    已经成为DL中专门的一派,高大上的样子 Intro: MIT 6.S191 Lecture 6: Deep Reinforcement Learning Course: CS 294: Deep Re ...

  6. Deep Reinforcement Learning 基础知识(DQN方面)

    Introduction 深度增强学习Deep Reinforcement Learning是将深度学习与增强学习结合起来从而实现从Perception感知到Action动作的端对端学习的一种全新的算 ...

  7. 论文笔记之:Dueling Network Architectures for Deep Reinforcement Learning

    Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN ...

  8. Deep Reinforcement Learning: Pong from Pixels

    这是一篇迟来很久的关于增强学习(Reinforcement Learning, RL)博文.增强学习最近非常火!你一定有所了解,现在的计算机能不但能够被全自动地训练去玩儿ATARI(译注:一种游戏机) ...

  9. 论文笔记之:Human-level control through deep reinforcement learning

    Human-level control through deep reinforcement learning Nature 2015 Google DeepMind Abstract RL 理论 在 ...

随机推荐

  1. openstack-on-centos7之环境准备

    centos7配置静态ip ifconfig查看网卡信息并获取到网卡的名称eth0s3 ifconfig 进入到网卡配置目录 cd /etc/sysconfig/network-scripts/ 找到 ...

  2. 设计模式(15)--Interpreter(解释器模式)--行为型

    作者QQ:1095737364    QQ群:123300273     欢迎加入! 1.模式定义: 解释器模式是类的行为模式.给定一个语言之后,解释器模式可以定义出其文法的一种表示,并同时提供一个解 ...

  3. js-ES6学习笔记-Iterator

    1.遍历器(Iterator)是一种接口,为各种不同的数据结构提供统一的访问机制.任何数据结构只要部署Iterator接口,就可以完成遍历操作(即依次处理该数据结构的所有成员). 2.Iterator ...

  4. 如何扩展Linux虚拟内存文件系统

    由于ArcGIS GeoAnalystics Server和Raster Analytics Server大数据分析平台都是基于Spark分析平台的,其部署服务器除了要求具有高内存特点外,也需要确保相 ...

  5. 通过 Cobalt Strike 利用 ms14-068

    拓扑图 攻击者(kali) 位于 192.168.245.0/24 网段,域环境位于 192.168.31.0/24 网段. 域中有一台 win7 有两张网卡,可以同时访问两个网段,以这台机器作为跳板 ...

  6. 实现网络数据提取你需要哪些java知识

    本篇对一些常用的java知识做一个整合,三大特性.IO操作.线程处理.类集处理,目的在于能用这些只是实现一个网页爬虫的功能. Ⅰ 首先对于一个java开发的项目有一个整体性的了解认知,项目开发流程: ...

  7. excel、xls文件读写操作

    python 常用的excel.xls文件读写操作,有两个模块 xlrd:读 xlwt:写 本次先写一个读的例子: class CaseData(object): def __init__(self, ...

  8. 使用TaskScheduler 调度器 实现跨线程的控件访问

    //任务调度器 TaskScheduler UIscheduler = null; public Form1() { //获取任务调度器 UIscheduler = TaskScheduler.Fro ...

  9. C++设计模式 ==> 策略模式与简单工厂模式结合

    简介 策略模式相较之于简单工厂模式适用于生产方法经常变化且方法较为繁多的情况,因为生产方法时常变化就会需要频繁修改工厂类,违背了开闭原则,这时就可以用策略选择类由客户端根据需求动态切换策略.且策略模式 ...

  10. mysql5.7.24启动报错:ERROR 1862 (HY000): Your password has expired. To log in you must change it using a client that supports expired passwords.

    报错原因是:密码过期.不管你是刚刚修改密码还是什么,只要登陆都是有问题的,都是报这样子的错误. 解决方法是: 1.修改/etc/my.cnf文件,在[mysqld]下加入“skip-grant-tab ...