http://poj.org/problem?id=3013

给出n个点,m个边。给出每个点的权值,每个边的权值。在m条边中选n-1条边使这n个点成为一棵树,root=1,求这棵树的最小费用,费用=树上每条边*子树中各顶点的权值。

思路:转化一下,发现每条边*子树中各定点的权值=各个点*点到根的最短路,于是转化成了root到各个点的最短路,又到不了的点则说明无法建树。

#pragma comment(linker, "/STACK:36777216")
#pragma GCC optimize ("O2")
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
#include <queue>
#include <map>
#include <iostream>
#include <algorithm>
using namespace std;
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define clr0(x) memset(x,0,sizeof(x))
#define clr1(x) memset(x,-1,sizeof(x))
#define eps 1e-9
const double pi = acos(-1.0);
typedef long long LL;
typedef unsigned long long ULL;
const int modo = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int inf = 0x3fffffff;
const LL _inf = 1e18;
const int maxn = 50005,maxm = 50005;
struct edge{
int v,w,next;
edge(){};
edge(int vv,int ww,int nnext):v(vv),w(ww),next(nnext){};
}e[maxm<<1];
int head[maxn],inq[maxn],vw[maxn];
LL dist[maxn];
int n,m,ecnt;
void init()
{
clr1(head);
ecnt = 0;
fill(dist,dist+maxn,_inf);
clr0(inq);
}
void add(int u,int v,int w)
{
e[ecnt] = edge(v,w,head[u]);
head[u] = ecnt++;
e[ecnt] = edge(u,w,head[v]);
head[v] = ecnt++;
}
void spfa(int src)
{
queue<int> q;
q.push(src);dist[src] = 0,inq[src] = 1;
while(!q.empty()){
int cur = q.front();
q.pop();inq[cur] = 0;
for(int i = head[cur];i != -1;i = e[i].next){
int nxt = e[i].v;
if(dist[nxt] > dist[cur] + e[i].w){
dist[nxt] = dist[cur] + e[i].w;
if(!inq[nxt])
inq[nxt] = 1,q.push(nxt);
}
}
}
}
void work()
{
LL ans = 0;
for(int i = 2;i <= n;++i){
if(dist[i] >= _inf){
puts("No Answer");
return ;
}
ans += dist[i] * vw[i];
}
printf("%I64d\n",ans);
}
int main(){
int u,v,w,_;
RD(_);
while(_--){
RD2(n,m);
init();
for(int i = 1;i <= n;++i)
RD(vw[i]);
while(m--){
RD3(u,v,w);
add(u,v,w);
}
spfa(1);
work();
}
return 0;
}

poj 3013 最短路变形的更多相关文章

  1. POJ 3013最短路变形....

    DES:计算输的最小费用.如果不能构成树.输出-1.每条边的费用=所有的子节点权值*这条边的权值.计算第二组样例可以知道树的费用是所有的节点的权值*到根节点的最短路径的长度. 用dij的邻接矩阵形式直 ...

  2. Heavy Transportation POJ 1797 最短路变形

    Heavy Transportation POJ 1797 最短路变形 题意 原题链接 题意大体就是说在一个地图上,有n个城市,编号从1 2 3 ... n,m条路,每条路都有相应的承重能力,然后让你 ...

  3. poj 1797(最短路变形)

    题目链接:http://poj.org/problem?id=1797 思路:题目意思很简单,n个顶点,m条路,每条路上都有最大载重限制,问1->n最大载重量.其实就是一最短路的变形,定义wei ...

  4. poj 1797 最短路变形dijkstra

    题意:题目大意:有n个城市,m条道路,在每条道路上有一个承载量,现在要求从1到n城市最大承载量,而最大承载量就是从城市1到城市n所有通路上的最大承载量 链接:点我 解题思路:其实这个求最大边可以近似于 ...

  5. poj 3013 最短路SPFA算法

    POJ_3013_最短路 Big Christmas Tree Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 23630 ...

  6. POJ 1797 最短路变形所有路径最小边的最大值

    题意:卡车从路上经过,给出顶点 n , 边数 m,然后是a点到b点的权值w(a到b路段的承重),求卡车最重的重量是多少可以从上面经过. 思路:求所有路径中的最小的边的最大值.可以用迪杰斯特拉算法,只需 ...

  7. POJ 3635 - Full Tank? - [最短路变形][手写二叉堆优化Dijkstra][配对堆优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 题意题解等均参考:POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]. 一些口胡: ...

  8. POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 Description After going through the receipts from your car trip ...

  9. POJ 2253 Frogger ( 最短路变形 || 最小生成树 )

    题意 : 给出二维平面上 N 个点,前两个点为起点和终点,问你从起点到终点的所有路径中拥有最短两点间距是多少. 分析 : ① 考虑最小生成树中 Kruskal 算法,在建树的过程中贪心的从最小的边一个 ...

随机推荐

  1. dbus 消息和消息总线实例讲解-二

    转自:http://www.fmddlmyy.cn/text53.html 2.3.2.ListActivatableNames和服务器的自动启动 运行: $ dbus-send --system - ...

  2. linux下gcc默认搜索的头文件及库文件路径

    转自:https://blog.csdn.net/fd315063004/article/details/7925854 一.头文件 gcc 在编译时如何去寻找所需要的头文件:※所以header fi ...

  3. CF Round #509 (Div. 2)

    前言:第一次打\(CF\),因为经验不足以及英语水平很烂,即便在机房大佬的带领下也是花了好久才读懂题目..\(A\)题直到\(11\)分钟才\(A\),题目一共才做了\(4\)题,太菜了.. A. H ...

  4. Java中关键字static的使用

    static 关键字 1).static只能修饰成员变量或成员方法,所有非静态是对象相关的,所有静态是类相关的. 2)被static修饰的成员变量成员方法独立于该类的任何对象,它不依赖类的特定的实例, ...

  5. ​零基础该如何学习UI设计

    ​零基础学习该如何学习UI设计,没有基础该怎么开始学习呢?UI设计可以说是入行门槛很低的职业了,而且随着互联网的快速发展,UI设计的市场前景也越来也好,更多的人看到了这个高薪的行业也开始心动了,想要在 ...

  6. PreparedStatement批量处理和事务

    PreparedStatement批量处理和事务代码如下: /* * PreparedStatement: 1.addBatch() 将一组参数添加到 PreparedStatement对象内部 2. ...

  7. 阿里云help

    docker 技术的安全性问题,如果一个集群多个用户不希望互相可以看到对方的docker镜像和容器,怎么办? .... http://mirrors.aliyun.com/help/centos yu ...

  8. GOAP

    市面上Unity人工智能的书籍基本上都是介绍这几个方面: AI角色的自主移动 --- 操控行为, 单体,小队,群体的行为. 我之前的文章 Unity Movement AI (一) , Unity M ...

  9. vue-cli引入jquery方法

    方法一: 一,在package.json里加入, dependencies:{ ”jquery“:”^2.3.4“ } 二,在webpack.base.conf.js里加入 const webpack ...

  10. CAS 单点登录 服务器整合

    概述 现在企业内部的系统越来越多,如果各个应用都有自己的用户系统,那么用户将不得不要记住不同系统的用户名密码,因此独立的用户系统应运而生,各个系统之间通过单点登录的方式,这样内部只需要记住一个用户名和 ...