ECCV 2016 paper list
摘录ECCV2016部分文章,主要有Human pose esimation, Human activiity / actions, Face alignment, Face detection & recognition & .. , Hand tracking, Eye, and Others.
以下为文章及标题(可能有错漏)
Human pose estimation:
[1]Towards Viewpoint Invariant 3DHuman Pose Estimation
Albert Haque, Boya Peng, Zelun Luo, Alexandre Alahi, Serena Yeung,and Li Fei-Fei
[2]Fast 6D Pose Estimation from aMonocular Image UsingHierarchical Pose Trees
Yoshinori Konishi, Yuki Hanzawa, Masato Kawade,and Manabu Hashimoto
[3]Keep It SMPL: AutomaticEstimation of 3D Human Pose and Shapefrom a SingleImage
Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler,Javier Romero, and Michael J. Black
[4] Zoom Better to See Clearer: Human and Object Parsing withHierarchicalAuto-Zoom Net
Fangting Xia, PengWang, Liang-Chieh Chen, and Alan L. Yuille
[5] A Sequential Approach to 3D Human Pose Estimation: Separationof Localization and Identification of Body Joints
Ho Yub Jung, YuminSuh, Gyeongsik Moon, and Kyoung Mu Lee
[6]DeeperCut: A Deeper, Stronger,and Faster Multi-person PoseEstimation Model
Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres,Mykhaylo Andriluka, and Bernt Schiele
[7]Human Attribute Recognition byDeep Hierarchical Contexts
Yining Li, Chen Huang, Chen Change Loy, and Xiaoou Tang
[8]Human Pose Estimation UsingDeep Consensus Voting .
Ita Lifshitz, Ethan Fetaya, and Shimon Ullman
[9]Human Pose Estimation viaConvolutional Part Heatmap Regression
Adrian Bulat and Georgios Tzimiropoulos
[10]Stacked Hourglass Networks forHuman Pose Estimation
Alejandro Newell, Kaiyu Yang, and Jia Deng
[11]Bayesian Image Based 3D PoseEstimation
Marta Sanzari, Valsamis Ntouskos, and Fiora Pirri
[12]Shape from Selfies: Human BodyShape Estimation Using CCARegression Forests
Endri Dibra, Cengiz Öztireli, Remo Ziegler, and Markus Gross
[13]Estimation of Human Body Shapein Motion with Wide Clothing
Jinlong Yang, Jean-Sébastien Franco, Franck Hétroy-Wheeler,and Stefanie Wuhrer
[14]Chained Predictions UsingConvolutional Neural Networks
Georgia Gkioxari, Alexander Toshev, and Navdeep Jaitly
Human activity:
[1]Real-Time RGB-D ActivityPrediction by Soft Regression
Jian-Fang Hu, Wei-ShiZheng, Lianyang Ma, Gang Wang,and Jianhuang Lai
[2]Learning Models for Actionsand Person-Object Interactions with Transferto QuestionAnswering
Arun Mallya and Svetlana Lazebnik
[3]RNN Fisher Vectors for ActionRecognition and Image Annotation.
Guy Lev, Gil Sadeh, Benjamin Klein, and Lior Wolf
[4]Online Human Action DetectionUsing Joint Classification-RegressionRecurrent NeuralNetworks
Yanghao Li, Cuiling Lan, Junliang Xing, Wenjun Zeng, Chunfeng Yuan,and Jiaying Liu
[5]DAPs: Deep Action Proposalsfor Action Understanding
Victor Escorcia, Fabian Caba Heilbron, Juan Carlos Niebles,and Bernard Ghanem
[6]Spatio-Temporal LSTM withTrust Gates for 3D HumanAction Recognition
Jun Liu, Amir Shahroudy, Dong Xu, and Gang Wang
[7]Multi-region Two-Stream R-CNNfor Action Detection
Xiaojiang Peng and Cordelia Schmid
Face alignment:
[1]A Recurrent Encoder-DecoderNetwork for Sequential Face Alignment
Xi Peng, Rogerio S. Feris, Xiaoyu Wang, and Dimitris N. Metaxas
[2]Robust Facial LandmarkDetection via Recurrent Attentive-RefinementNetworks
Shengtao Xiao, Jiashi Feng, Junliang Xing, Hanjiang Lai,Shuicheng Yan, and Ashraf Kassim
[3]Deep Deformation Network forObject Landmark Localization
Xiang Yu, Feng Zhou, and ManmohanChandraker
[4]Joint Face Alignment and 3DFace Reconstruction
Feng Liu, Dan Zeng, Qijun Zhao, and Xiaoming Liu
[5]Robust Face Alignment Using aMixture of Invariant Experts
Oncel Tuzel, Tim K. Marks, and Salil Tambe
Face detection & recognition& …:
[1]MOON: A Mixed Objective Optimization Network for the Recognitionof Facial Attributes
Ethan M. Rudd, Manuel Günther, and Terrance E. Boult
[2]Supervised Transformer Networkfor Efficient Face Detection
Dong Chen, Gang Hua,Fang Wen, and Jian Sun
[3]Ultra-Resolving Face Images byDiscriminative Generative Networks
Xin Yu and Fatih Porikli
[4]Do We Really Need to CollectMillions of Faces for EffectiveFace Recognition?
Iacopo Masi, Anh Tuấn Trần, Tal Hassner,Jatuporn Toy Leksut,and Gérard Medioni
[5]Deep Cascaded Bi-Network forFace Hallucination
Shizhan Zhu, SifeiLiu, Chen Change Loy, and Xiaoou Tang
[6]Real-Time Facial Segmentationand Performance Capture from RGB Input
Shunsuke Saito, Tianye Li, and Hao Li
[7]Cascaded Continuous Regressionfor Real-Time Incremental Face Tracking
Enrique Sánchez-Lozano, Brais Martinez, Georgios Tzimiropoulos,and Michel Valstar
[8]MS-Celeb-1M: A Dataset andBenchmark for Large-ScaleFace Recognition
Yandong Guo, LeiZhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao
[9]Joint Face RepresentationAdaptation and Clustering in Videos.
Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang
[10]Grid Loss: Detecting OccludedFaces
Michael Opitz, Georg Waltner, Georg Poier, Horst Possegger,and Horst Bischof
[11]Face Detection with End-to-EndIntegration of a ConvNet and a 3D Model
Yunzhu Li, BenyuanSun, Tianfu Wu, and Yizhou Wang
[12]Face Recognition from MultipleStylistic Sketches: Scenarios, Datasets,and Evaluation
Chunlei Peng,Nannan Wang, Xinbo Gao, and Jie Li
[13]Fast Face Sketch Synthesis viaKD-Tree Search
Yuqian Zhang,Nannan Wang, Shengchuan Zhang, Jie Li,and Xinbo Gao
Eye:
[1]A 3D Morphable Eye RegionModel for Gaze Estimation
Erroll Wood, Tadas Baltrušaitis, Louis-Philippe Morency,Peter Robinson, and Andreas Bulling
Hand:
[1]Real-Time Joint Tracking of aHand Manipulating an Objectfrom RGB-D Input
Srinath Sridhar, Franziska Mueller, Michael Zollhöfer, Dan Casas,Antti Oulasvirta, and Christian Theobalt
[2]Spatial Attention Deep Netwith Partial PSO for Hierarchical HybridHand PoseEstimation
Qi Ye, Shanxin Yuan, and Tae-Kyun Kim
[3]Hand Pose Estimation fromLocal Surface Normals
Chengde Wan, AngelaYao, and Luc Van Gool
Others:
[1]DOC: Deep OCclusion Estimationfrom a Single Image.
Peng Wang and AlanYuille
[2]Convolutional OrientedBoundaries
Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbeláez,and Luc Van Gool
[3]Superpixel ConvolutionalNetworks Using Bilateral Inceptions
Raghudeep Gadde, VarunJampani, Martin Kiefel, Daniel Kappler,and Peter V.Gehler
[4]SDF-2-SDF: Highly Accurate 3DObject Reconstruction
Miroslava Slavcheva,Wadim Kehl, Nassir Navab, and Slobodan Ilic
[5]Learning to Hash with BinaryDeep Neural Network
Thanh-Toan Do,Anh-Dzung Doan, and Ngai-Man Cheung
[6]Going Further with Point PairFeatures
Stefan Hinterstoisser, Vincent Lepetit, Naresh Rajkumar,and Kurt Konolige
[7]Automatic Attribute Discoverywith Neural Activations
SirionVittayakorn, Takayuki Umeda, Kazuhiko Murasaki, Kyoko Sudo,Takayuki Okatani, and Kota Yamaguchi
ECCV 2016 paper list的更多相关文章
- Learning to Track at 100 FPS with Deep Regression Networks ECCV 2016 论文笔记
Learning to Track at 100 FPS with Deep Regression Networks ECCV 2016 论文笔记 工程网页:http://davheld.git ...
- CVPR 2016 paper reading (2)
1. Sketch me that shoe, Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M. Hospedales, Cheng Chan ...
- AAAI 2016 paper阅读
本篇文章调研一些感兴趣的AAAI 2016 papers.科研要多读paper!!! Learning to Generate Posters of Scientific Papers,Yuting ...
- CVPR 2016 paper reading (6)
1. Neuroaesthetics in fashion: modeling the perception of fashionability, Edgar Simo-Serra, Sanja Fi ...
- CVPR 2016 paper reading (3)
DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations, Ziwei Liu, Pin ...
- Deep Image Retrieval: Learning global representations for image search In ECCV, 2016学习笔记
- 论文地址:https://arxiv.org/abs/1604.01325 contribution is twofold: (i) we leverage a ranking framework ...
- Summary on Visual Tracking: Paper List, Benchmarks and Top Groups
Summary on Visual Tracking: Paper List, Benchmarks and Top Groups 2018-07-26 10:32:15 This blog is c ...
- Ubuntu_ROS中应用kinect v2笔记
Ubuntu_ROS中应用kinect v2笔记 个人觉得最重要的资料如下: 1. Microsoft Kinect v2 Driver Released http://www.ros.org/new ...
- (转)Multi-Object-Tracking-Paper-List
Multi-Object-Tracking-Paper-List 2018-08-07 22:18:05 This blog is copied from: https://github.com/Sp ...
随机推荐
- Java 使用 jacob 将 word 文档转换为 pdf 文件
网上查询了许许多多的博客,说利用 poi.iText.Jsoup.jdoctopdf.使用 jodconverter 来调用 openOffice 的服务来转换等等,我尝试了很多种,但要么显示不完全, ...
- activemq , redis
activemq是干什么的?即时消息通信,简单说: A发送消息给activemq 服务,B监听服务获取消息.假如有如下场景: A发送了一个请求,但是这个请求需要做 10 项工作,如果按照正常操作,需要 ...
- Mockito学习(zz)
junitmaven软件测试框架项目管理 Mockito是一个流行的Mocking框架.它使用起来简单,学习成本很低,而且具有非常简洁的API,测试代码的可读性很高.因此它十分受欢迎,用 户群越来越 ...
- maven 介绍(zz )
Maven 编辑 目录 1简介 2特点 3常用命令 4推荐书籍 5Win7配置 6生命周期 1 1简介 Maven是基于项目对象模型(POM),可以通过一小段描述信息来管理项目的构 ...
- git舍弃文件更改
未进行任何提交,即文件更改在工作区 # filename 对应进行操作的文件名 git checkout -- filename 已用git add 命令提交,即文件更改在暂存区 # 舍弃暂存区的修改 ...
- 【C#】详解C#委托
目录结构: contents structure [+] 委托语法 泛型委托 委托链 lambda表达式 揭秘委托 类库中的委托 委托和反射 1.委托语法 本文会详细阐述委托的使用,以及实现,想必读者 ...
- IDEA如何把写好的java文件/项目打包成一个jar的文件
一.命令行的方法 打开cmd,输入jar -cvf [打包后的文件名].jar [要打包的目录]. 二.IDEA的方法 写完一个java程序把它封装成一个jar的包 这样就可以在别的jar上面运行这 ...
- java 模拟登录新浪微博(通过cookie)
这几天一直在研究新浪微博的爬虫,发现爬取微博的数据首先要登录.本来打算是通过账号和密码模拟浏览器登录.但是现在微博的登录机制比较复杂.通过账号密码还没有登录成功QAQ.所以就先记录下,通过cookie ...
- 关于java项目中的XML文件
一,xml的机制 1.xml文件会在服务器启动的时候进行加载 2.加载完成后根据xml文件里面配置的属性对集成的对象进行属性和行为赋予 3.xml会有很多不同的标签,每个标签都有它特定的含义 二.为什 ...
- 使用promise判断是否登录
步骤: 1.创建并返回new Promise((success,error)=>{}),success和error分别是成功和失败后所执行的函数 2.判断是否含有cookie,如果含有cooki ...