UVa 10870 Recurrences (矩阵快速幂)
题意:给定 d , n , m (1<=d<=15,1<=n<=2^31-1,1<=m<=46340)。a1 , a2 ..... ad。f(1), f(2) ..... f(d),求 f(n) = a1*f(n-1) + a2*f(n-2) +....+ ad*f(n-d),计算f(n) % m。
析:很明显的矩阵快速幂,构造矩阵,
,然后后面的就很简单了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
//#define all 1,n,1
#define FOR(i,n,x) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.in", "r", stdin)
#define freopenw freopen("out.out", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 20 + 10;
const int maxm = 1e6 + 2;
const LL mod = 1000000007;
const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
} struct Matrix{
int a[15][15], n;
void init(){ ms(a, 0); }
void toOne(){ FOR(i, n, 0) a[i][i] = 1; }
Matrix operator * (const Matrix &rhs){
Matrix res; res.n = n; res.init();
FOR(i, n, 0) FOR(j, n, 0) FOR(k, n, 0)
res.a[i][j] = (res.a[i][j] + (LL)a[i][k] * rhs.a[k][j]) % m;
return res;
}
}; Matrix fast_pow(Matrix x, int n){
Matrix res; res.n = x.n; res.init(); res.toOne();
while(n){
if(n&1) res = res * x;
x = x * x;
n >>= 1;
}
return res;
} int main(){
int d;
while(scanf("%d %d %d", &d, &n, &m) == 3 && n+m+d){
Matrix x, y; x.init(); y.init();
x.n = y.n = d;
for(int i = 0; i < d; ++i){
scanf("%d", &y.a[i][0]);
y.a[i][0] %= m;
}
for(int i = d-1; i >= 0; --i){
scanf("%d", &x.a[0][i]);
x.a[0][i] %= m;
}
if(n <= d){ printf("%d\n", x.a[0][d-n]); continue; }
for(int i = 0; i + 1 < d; ++i) y.a[i][i+1] = 1;
Matrix ans = x * fast_pow(y, n - d);
printf("%d\n", ans.a[0][0]);
}
return 0;
}
UVa 10870 Recurrences (矩阵快速幂)的更多相关文章
- uva 10870 递推关系矩阵快速幂模
		Recurrences Input: standard input Output: standard output Consider recurrent functions of the follow ... 
- UVA 10870 - Recurrences(矩阵高速功率)
		UVA 10870 - Recurrences 题目链接 题意:f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), ... 
- UVA10870 Recurrences —— 矩阵快速幂
		题目链接:https://vjudge.net/problem/UVA-10870 题意: 典型的矩阵快速幂的运用.比一般的斐波那契数推导式多了几项而已. 代码如下: #include <bit ... 
- UVA - 10870 Recurrences  【矩阵快速幂】
		题目链接 https://odzkskevi.qnssl.com/d474b5dd1cebae1d617e6c48f5aca598?v=1524578553 题意 给出一个表达式 算法 f(n) 思路 ... 
- POJ-3070Fibonacci(矩阵快速幂求Fibonacci数列) uva 10689 Yet another Number Sequence【矩阵快速幂】
		典型的两道矩阵快速幂求斐波那契数列 POJ 那是 默认a=0,b=1 UVA 一般情况是 斐波那契f(n)=(n-1)次幂情况下的(ans.m[0][0] * b + ans.m[0][1] * a) ... 
- uva 10518 - How Many Calls?(矩阵快速幂)
		题目链接:uva 10518 - How Many Calls? 公式f(n) = 2 * F(n) - 1, F(n)用矩阵快速幂求. #include <stdio.h> #inclu ... 
- Tribonacci UVA - 12470  (简单的斐波拉契数列)(矩阵快速幂)
		题意:a1=0;a2=1;a3=2; a(n)=a(n-1)+a(n-2)+a(n-3); 求a(n) 思路:矩阵快速幂 #include<cstdio> #include<cst ... 
- UVA - 11149   (矩阵快速幂+倍增法)
		第一道矩阵快速幂的题:模板题: #include<stack> #include<queue> #include<cmath> #include<cstdio ... 
- UVA10870—Recurrences(简单矩阵快速幂)
		题目链接:https://vjudge.net/problem/UVA-10870 题目意思: 给出a1,a2,a3,a4,a5………………ad,然后算下面这个递推式子,简单的矩阵快速幂,裸题,但是第 ... 
随机推荐
- CQ3
			super.bark(); 不要第一个括号 Write a concrete meow( ) method 抽象类实例化后要加一个实例化的方法. 抽象类里可以没有抽象方法. What does ... 
- MVc Identity登陆锁定
			2016-08-03 [ASP.NET Identity] OAuth Server 鎖定(Lockout)登入失敗次數太多的帳號 743 6 ASP.NET Identity 檢舉文章 2016-0 ... 
- python  multiprocessing   和tcp
			#用类方法 服务端 from socket import *from multiprocessing import Processimport os class Myprocess(Process): ... 
- c#dev tabcontrol 与嵌套gridcontrol 总结
			Gridcontrol设置 1: 拖进去的时候别拖到tabcontrol外边, 否则dock 停靠的时候,停靠错了地方. 2:去掉Drag a column header here to group. ... 
- 计算器类(C++&JAVA——表达式转换、运算、模板公式)
			运行: (a+b)*c 后缀表达式:ab+c* 赋值: Enter the a : 10 Enter the b : 3 Enter the c : 5 结果为:65 代码是我从的逻辑判断系统改过来的 ... 
- codeforces round#509
			博主水平不高, 只能打完$4$题, QAQ什么时候才能变强啊嘤嘤嘤 订正完6题了, 还想打今天下午的CF , 只能迟十分钟了, 掉分预定 A. Heist 输出 $max - min + n - 1 ... 
- 多维数组sorted函数的用法
			对某一个位置排列 l=[[1,5,7,9],[5,10,6,11],[4,2,1,4]] newlist=sorted(l,key=lambda iterm : iterm[0],reverse=Tr ... 
- 进化树(phylogenetic trees)
			构建进化树的工具有: muscle mega 进化树的可视化: 本地可视化软件 Figtree (网址:http://tree.bio.ed.ac.uk/software/figtree/) 该软件是 ... 
- [SoapUI]  Property Expansion in soapUI
			1. Property Expansion in soapUI SoapUI provides a common syntax to dynamically insert ("expand& ... 
- leveldb skiplist的改编非并发去除内存池版本 代码练习
			// MuSkipList.cpp: 定义控制台应用程序的入口点. // #include "stdafx.h" #include <random> #include ... 
