题意:给定一个连通的无向图G,至少要添加几条边,才能使其变为双连通图。

链接:点我

kuangbin模板题,分析链接:点我

 #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <map>
using namespace std;
const int MAXN = ;//点数
const int MAXM = ;//边数,因为是无向图,所以这个值要*2
struct Edge
{
int to,next;
bool cut;//是否是桥标记
}edge[MAXM];
int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~block
int Index,top;
int block;//边双连通块数
bool Instack[MAXN];
int bridge;//桥的数目
void addedge(int u,int v)
{
edge[tot].to = v;edge[tot].next = head[u];edge[tot].cut=false;
head[u] = tot++;
}
void Tarjan(int u,int pre)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u];i != -;i = edge[i].next)
{
v = edge[i].to;
if(v == pre)continue;
if( !DFN[v] )
{
Tarjan(v,u);
if( Low[u] > Low[v] )Low[u] = Low[v];
if(Low[v] > DFN[u])
{
bridge++;
edge[i].cut = true;
edge[i^].cut = true;
}
}
else if( Instack[v] && Low[u] > DFN[v] )
Low[u] = DFN[v];
}
if(Low[u] == DFN[u])
{
block++;
do
{
v = Stack[--top];
Instack[v] = false;
Belong[v] = block;
}
while( v!=u );
}
}
void init()
{
tot = ;
memset(head,-,sizeof(head));
}
int du[MAXN];//缩点后形成树,每个点的度数
void solve(int n)
{
memset(DFN,,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
Index = top = block = ;
Tarjan(,);
int ans = ;
memset(du,,sizeof(du));
for(int i = ;i <= n;i++)
for(int j = head[i];j != -;j = edge[j].next)
if(edge[j].cut)
du[Belong[i]]++;
for(int i = ;i <= block;i++)
if(du[i]==)
ans++;
//找叶子结点的个数ans,构造边双连通图需要加边(ans+1)/2
printf("%d\n",(ans+)/);
}
int main()
{
int n,m;
int u,v;
while(scanf("%d%d",&n,&m)==)
{
init();
while(m--)
{
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
}
solve(n);
}
return ;
}

poj 3177 边双联通 **的更多相关文章

  1. poj 3177-3352边双联通

    买一送一啊  3177和3352的区别在于3177数据有重边!但是我先做3177的  那么就直接ctrl+c+v搞3352了~. 题意:给一个无向图,要令每个点之间至少有两条不重合的路,需要至少加多少 ...

  2. POJ 2117 Electricity 双联通分量 割点

    http://poj.org/problem?id=2117 这个妹妹我竟然到现在才见过,我真是太菜了~~~ 求去掉一个点后图中最多有多少个连通块.(原图可以本身就有多个连通块) 首先设点i去掉后它的 ...

  3. POJ 3177 边双连通求连通量度的问题

    这道题的总体思路就是找到连通量让它能够看作一个集合,然后找这个集合的度,度数为1的连通量为k,那么需要添加(k+1)/2条边才可以保证边双连通 这里因为一个连通量中low[]大小是相同的,所以我们用a ...

  4. poj 3177 Redundant Paths

    题目链接:http://poj.org/problem?id=3177 边双连通问题,与点双连通还是有区别的!!! 题意是给你一个图(本来是连通的),问你需要加多少边,使任意两点间,都有两条边不重复的 ...

  5. POJ 3177 Redundant Paths 双联通分量 割边

    http://poj.org/problem?id=3177 这个妹妹我大概也曾见过的~~~我似乎还没写过双联通分量的blog,真是智障. 最少需要添多少条边才能使这个图没有割边. 边双缩点后图变成一 ...

  6. poj 3177 Redundant Paths 求最少添加几条边成为双联通图: tarjan O(E)

    /** problem: http://poj.org/problem?id=3177 tarjan blog: https://blog.csdn.net/reverie_mjp/article/d ...

  7. POJ 3352 Road Construction ; POJ 3177 Redundant Paths (双联通)

    这两题好像是一样的,就是3177要去掉重边. 但是为什么要去重边呢??????我认为如果有重边的话,应该也要考虑在内才是. 这两题我用了求割边,在去掉割边,用DFS缩点. 有大神说用Tarjan,不过 ...

  8. poj 3177&&3352 求边双联通分量,先求桥,然后求分量( 临界表代码)

    /*这道题是没有重边的,求加几条边构成双联通,求边联通分量,先求出桥然后缩点,成一个棵树 找叶子节点的个数*/ #include<stdio.h>//用容器写在3177这个题上会超内存,但 ...

  9. POJ 3177 Redundant Paths 无向图边双联通基础题

    题意: 给一个无向图,保证任意两个点之间有两条完全不相同的路径 求至少加多少边才能实现 题解: 得先学会一波tarjan无向图 桥的定义是:删除这条边之后该图不联通 一条无向边(u,v)是桥,当且仅当 ...

随机推荐

  1. [转载]TypeScript 入门指南

    之前有听过,但未使用过,而最近在用nodejs,angularjs做一些前端项目,想到了这个来,正是学习TypeScript的时候,看介绍貌似和coffeescript相似,也JavaScript的转 ...

  2. Asp.Net中索引器的用法

    索引器定义类似于属性,但其功能与属性并不相同.索引器提供一种特殊的方法编写get和set访问器.属性可以像访问字段一样访问对象的数据,索引器可以使用户像访问数组一样访问类成员. 一.索引器特性 1.g ...

  3. spring Mvc Web 编码相关 [model 到 视图传递数据] (九)

    在某种编码环境,由bean注解的参数可能会发生乱码问题. 即可页面web.xml或其他地方都设备UTF-8, 但还是会有这样的问题. 首先不要使用model传到视图的数据. 第二,不要request. ...

  4. 微信小程序实现首页图片多种排版布局!

    先来个效果图: 使用技术主要是flex布局,绝对定位布局,小程序前端页面开发,以及一些样式! 直接贴代码,都有详细注释,熟悉一下,方便以后小程序开发! wxml: <view class='in ...

  5. python內建模块之datetime

    from:https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/00143193755 ...

  6. mitmproxy实践

    首先附上github地址:https://github.com/mitmproxy/mitmprox,上面的内容永远是最新的 作为一名测试穿戴设备相关app的工程师,与数据打交道是常事,那么,如果想要 ...

  7. ApiCloud开发经验总结

    1. 引擎或模块问题:遇到应用层无法解决的问题,如果能确定需要引擎和模块支持的,不要自己想办法绕过去,要第一时间在开发者社区提交问题,或找APICloud项目经理提出. !!!注意!!!: 在开发者社 ...

  8. yum安装软件报错:curl#6 - "Could not resolve host: mirrorlist.centos.org; Temporary failure in name resolut

    # yum install -y epel-release Loaded plugins: fastestmirror Repository base is listed more than once ...

  9. ckeditor:新增时会得到上次编辑的内容

    参考网址:http://blog.sina.com.cn/s/blog_6961ba9b0102wwye.html 第一次新增时没有问题,编辑器里面内容为空,编辑数据时,也是正常,但是第二次点击新增时 ...

  10. hashlib和hmac

    hashlib hashlib模块用于加密相关的操作,代替了md5和sha模块,主要提供SHA1,SHA224,SHA256,SHA384,SHA512,MD5算法. #!/usr/bin/env p ...