转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove

题目:给出n个城市需要去占领,有m条线段是障碍物,有p个士兵可以用。占领城市有个先后顺序,每个士兵有个背包,占领城市之后,仅能补给一次背包。问背包容量最少是多少,可以用这P个士兵完成任务,起点任意 。

http://acm.hdu.edu.cn/showproblem.php?pid=4606

首先:枚举所有顶点,求一下距离,判断是否与线段相交。然后 floyd预处理最短路

之后是二分答案,判断是否可达

根据占领的先后顺序建边,根据二分的值判断不需要补给是否能够到达。

之后便是判断最小路径覆盖数是否小于等于P。

#include <iostream>
#include <queue>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long LL;
const int N = 505;
const int M = 3000000;
const int INF = 100000;
const double eps = 1e-7;
inline int dcmp(double d){
return d < -eps? -1 : d > eps;
}
inline double sqr(double d){
return d * d;
}
struct Point {
double x, y;
Point (){}
Point (double _x,double _y):x(_x),y(_y){}
inline bool operator == (const Point &p)const {
return (dcmp(x - p.x) == 0 && dcmp(y - p.y) == 0);
}
inline Point operator - (const Point &p)const {
return Point(x - p.x,y - p.y);
}
inline double operator * (const Point &p)const {
return x * p.y - y * p.x;
}
inline double operator / (const Point &p)const {
return x * p.x + y * p.y;
}
inline double Distance(Point p){
return sqrt(sqr(p.x - x) + sqr(p.y - y));
}
void input(){
scanf ("%lf %lf", &x, &y);
}
}p[N];
struct Line{
Point a,b;
void input(){
a.input();
b.input();
}
Line(){}
Line(Point _a,Point _b):a(_a),b(_b){}
inline bool operator == (const Line &l) const{
return (a == l.a && b == l.b) || (a == l.b && b == l.a);
}
inline double operator * (const Point &p)const {
return (b - a) * (p - a);
}
inline double operator / (const Point &p)const {
return (p - a) / (p - b);
}
inline int SegCrossSeg(const Line &v){
int d1 = dcmp((*this) * v.a);
int d2 = dcmp((*this) * v.b);
int d3 = dcmp(v * a);
int d4 = dcmp(v * b);
if((d1 ^ d2) == -2 && (d3 ^ d4) == -2) return 2;
return ((d1 == 0 && dcmp((*this) / v.a) <= 0)
||(d2 == 0 && dcmp((*this) / v.b) <= 0)
||(d3 == 0 && dcmp(v / a) <= 0)
||(d4 == 0 && dcmp(v / b) <= 0) );
}
}l[N];
int n , m , K , seq[N];
int match[N], vis[N];
double dist[N][N];
int tot , start[N];
struct Edge {
int v, next;
}e[N * N];
void _add (int u , int v) {
e[tot].v = v;
e[tot].next = start[u];
start[u] = tot ++;
}
bool dfs (int u) {
for (int i = start[u] ; i != -1 ; i = e[i].next) {
int v = e[i].v;
if (! vis[v]) {
vis[v] = 1;
if(match[v] == -1 || dfs(match[v])) {
match[v] = u;
return true;
}
}
}
return false;
}
int hungry () {
int ans = 0;
memset (match , -1, sizeof(match)) ;
for (int i = 1 ; i <= n ; i ++) {
memset (vis , 0 , sizeof(vis));
if (dfs(i)) ans ++;
}
return ans;
}
bool check (double mid) {
tot = 0 ;
memset (start , -1 , sizeof(start));
for (int i =1 ; i <= n ; i ++) {
for (int j = i + 1 ; j <= n ; j ++) {
if(dist[seq[i]][seq[j]] <= mid)
_add (seq[i] , seq[j] + n);
}
}
return n - hungry() <= K;
}
double solve(){
double l = 0 , r = INF;
double ans = -1;
int cnt = 50;
while(cnt --){
double mid = (l + r) * 0.5;
if(check(mid)){
ans = mid;
r = mid;
}
else l = mid;
}
return ans;
}
int main(){
int t;
scanf ("%d", &t);
while (t --){
scanf ("%d%d%d", &n, &m, &K);
for (int i = 1 ; i <= n ; i ++){
p[i].input();
}
for (int i = 1 ; i <= m ; i ++){
l[i].input();
p[n + (i - 1) * 2 + 1] = l[i].a;
p[n + i * 2] = l[i].b;
}
for (int i = 1 ; i <= n + m * 2 ; i ++){
for (int j = 1 ; j <= n + m * 2 ; j ++){
if(i == j) dist[i][j] = 0.0;
else {
bool flag = false;
for (int k = 1 ; k <= m ; k ++){
if(l[k] == Line(p[i] , p[j])) continue;
if (l[k].SegCrossSeg(Line(p[i] , p[j])) == 2) {
flag = true;
break ;
}
}
if(flag) dist[i][j] = 1e9;
else dist[i][j] = p[i].Distance(p[j]);
}
}
}
for(int i = 1;i <= n;i ++){
scanf("%d",&seq[i]);
}
for (int k = 1 ; k <= n + m * 2 ; k ++) {
for (int i = 1 ; i <= n + m * 2 ; i ++) {
for (int j = 1 ; j <= n + m * 2 ;j ++ ){
dist[i][j] = fmin(dist[i][j] , dist[i][k] + dist[k][j]);
}
}
}
double ans = solve();
printf("%.2f\n",ans);
}
return 0;
}

HDU 4606 Occupy Cities (计算几何+最短路+最小路径覆盖)的更多相关文章

  1. Delivering Goods UVALive - 7986(最短路+最小路径覆盖)

    Delivering Goods UVALive - 7986(最短路+最小路径覆盖) 题意: 给一张n个点m条边的有向带权图,给出C个关键点,问沿着最短路径走,从0最少需要出发多少次才能能覆盖这些关 ...

  2. HDU 4606 Occupy Cities (计算几何+最短路+二分+最小路径覆盖)

    Occupy Cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  3. HDU 4606 Occupy Cities ★(线段相交+二分+Floyd+最小路径覆盖)

    题意 有n个城市,m个边界线,p名士兵.现在士兵要按一定顺序攻占城市,但从一个城市到另一个城市的过程中不能穿过边界线.士兵有一个容量为K的背包装粮食,士兵到达一个城市可以选择攻占城市或者只是路过,如果 ...

  4. (hdu step 6.3.3)Air Raid(最小路径覆盖:求用最少边把全部的顶点都覆盖)

    题目: Air Raid Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...

  5. hdu 4606 Occupy Cities

    http://acm.hdu.edu.cn/showproblem.php?pid=4606 两点之间如果有线段相隔的话,他们的最短路就需要经过线段的端点 把所有线段的端点也加入点数组中,求任意两个点 ...

  6. HDU 3861 The King’s Problem 最小路径覆盖(强连通分量缩点+二分图最大匹配)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 最小路径覆盖的一篇博客:https://blog.csdn.net/qq_39627843/ar ...

  7. Air Raid---hdu1151(最小路径覆盖)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1151 最小路径覆盖 == 顶点数 - 最大匹配. #include<stdio.h> #i ...

  8. hdu 4606 简单计算几何+floyd+最小路径覆盖

    思路:将所有的直线的两个端点和城市混在一起,将能直接到达的两个点连线,求一次floyd最短路径.二分枚举bag容量,然后按给的要先后占领的城市由前向后,把能到一步到达的建一条边.然后求一次最小路径覆盖 ...

  9. HDU 3861.The King’s Problem 强联通分量+最小路径覆盖

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. 如何在github上创建一个Repository (Windows)

    一种方式是利用Github for windows工具 来操作github,这个是我推荐的方式 1 请先下载一个工具Github for windows,下载地址为:https://windows.g ...

  2. Ural 1099 Work Scheduling

    http://acm.timus.ru/problem.aspx?space=1&num=1099 题意:有n个人,很多对合作关系,每个人只能和一个人合作,求最多能选出多少人. 一般图匹配 # ...

  3. 【HDOJ】4986 Little Pony and Alohomora Part I

    递推.设n个盒子的Spell次数为S(n),期望为E(n).当有n个盒子时,可能第n把钥匙在第n个盒子中,此时的Spell次数应该为(n-1)!+S(n-1):当第n把钥匙不在第n个盒子中,混合排列, ...

  4. #include <sys/stat.h>的作用

    #include <sys/stat.h> 文件状态, 是unix/linux系统定义文件状态所在的伪标准头文件. 含有类型与函数: dev_t     st_dev     Device ...

  5. baiduMap 显示所有的marker(在视野里显示所有的)

    搞Android的,所以比较幸苦和累现在搞的app是关于百度地图的,因为要求要把所有覆盖物显示在一个视野...所以在网上找了很久,终于找打了方法 我引用的包是: 记录一下,其实不算很难.一个小点.翻了 ...

  6. 线程间同步之 semaphore(信号量)

    原文地址:http://www.cnblogs.com/yuqilin/archive/2011/10/16/2214429.html semaphore 可用于进程间同步也可用于同一个进程间的线程同 ...

  7. openStack 云平台使用一般杂记

    1. To launch an instance,you must at least specify the flavor,image name,network,security group,keyp ...

  8. 12、ERP设计之 系统基础管理(BS)- 模块与菜单的关联

    ShareERP2013-10-03 模块:具有功能设计.权限绑定,链接用户菜单与系统的重要桥梁. 菜单:是用于显示与用户交互的重要入口,更是导航系统的舵手,所以它的设计直接影响到用户体验. 菜单可能 ...

  9. Matlab绘制三维图形以及提示框

    1.首先,在编辑区输入如下代码 >> [x,y] = meshgrid([-100,0.1,100]); >> z = sqrt(x.^2 + y.^2); >> ...

  10. hyperv虚拟机网络速度慢问题的解决办法

    服务器安装了windows2012R2进行虚拟化,虚拟机也是用的是windows2012R2的操作系统,这样可以一次激活对应的虚拟机. 在使用虚拟机的过程中发现问题,虚拟机主机的网速正常,无论是ftp ...