Solr4.8.0源码分析(12)之Lucene的索引文件(5)
Solr4.8.0源码分析(12)之Lucene的索引文件(5)
1. 存储域数据文件(.fdt和.fdx)
Solr4.8.0里面使用的fdt和fdx的格式是lucene4.1的。为了提升压缩比,StoredFieldsFormat以16KB为单位对文档进行压缩,使用的压缩算法是LZ4,由于它更着眼于速度而不是压缩比,所以它能快速压缩以及解压。
1.1 存储域数据文件(.fdt)

- 真正保存存储域(stored field)信息的是fdt文件,该文件存放了压缩后的文档,按16kb或者更大的模块大小为单位进行压缩。当要写入segment时候,文档会先被存储在内存的buffer里面,当buffer大小大于16kb或者更大时候,这些文档就会被刷入磁盘以LZ4格式压缩存放。
- fdt文件主要由三部分组成,Header信息,PacjedIntsVersion信息,以及多个块chunk。
- fdt是以chunk为单位进行压缩以及解压缩的,一个chunk块内含有一个或者多个document
- chunk内含有第一个document的编号即DocBase,块内document的个数即ChunkDocs,每一个Document的存储的Field的个数即DocFieldCounts,所有在块内的document的长度即DocLengths,以及多个压缩的document。
- CompressedDoc由FieldNumAndType和Value组成。FieldNumAndType是一个Vlong型,它的最低三位表示Type,其他位数表示FieldNum即域号。
- Value对应Type,
- 0: Value is String
- 1: Value is BinaryValue
- 2: Value is Int
- 3: Value is Float
- 4: Value is Long
- 5: Value is Double
- 6, 7: unused
- 如果文档大于16KB,那么chunk只会存在一个文档。因为一个文档的所有域必须全部在同一chunk种
- 如果在chunk块中多个文档较大且使得chunk大于32kb时,那么chunk会被压缩成多个16KB大小的LZ4块。
- 该结构不支持大于(231 - 214) bytes的单个文档
StoredFieldsFormat继承了CompressingStoredFieldsFormat,所以先通过学习CompressingStoredFieldsReader来Solr是怎么解析.fdx和.fdt的
public CompressingStoredFieldsReader(Directory d, SegmentInfo si, String segmentSuffix, FieldInfos fn,
IOContext context, String formatName, CompressionMode compressionMode) throws IOException {
this.compressionMode = compressionMode;
final String segment = si.name;
boolean success = false;
fieldInfos = fn;
numDocs = si.getDocCount();
ChecksumIndexInput indexStream = null;
try {
//打开.fdx名字
final String indexStreamFN = IndexFileNames.segmentFileName(segment, segmentSuffix, FIELDS_INDEX_EXTENSION);
//打开.fdt名字
final String fieldsStreamFN = IndexFileNames.segmentFileName(segment, segmentSuffix, FIELDS_EXTENSION);
// Load the index into memory
//解析.fdx文件
indexStream = d.openChecksumInput(indexStreamFN, context);
//获取header
final String codecNameIdx = formatName + CODEC_SFX_IDX;
version = CodecUtil.checkHeader(indexStream, codecNameIdx, VERSION_START, VERSION_CURRENT);
assert CodecUtil.headerLength(codecNameIdx) == indexStream.getFilePointer();
//开始解析blocks
indexReader = new CompressingStoredFieldsIndexReader(indexStream, si); long maxPointer = -1; if (version >= VERSION_CHECKSUM) {
maxPointer = indexStream.readVLong();
CodecUtil.checkFooter(indexStream);
} else {
CodecUtil.checkEOF(indexStream);
}
indexStream.close();
indexStream = null; // Open the data file and read metadata
//解析.fdt文件
fieldsStream = d.openInput(fieldsStreamFN, context);
if (version >= VERSION_CHECKSUM) {
if (maxPointer + CodecUtil.footerLength() != fieldsStream.length()) {
throw new CorruptIndexException("Invalid fieldsStream maxPointer (file truncated?): maxPointer=" + maxPointer + ", length=" + fieldsStream.length());
}
} else {
maxPointer = fieldsStream.length();
}
this.maxPointer = maxPointer;
final String codecNameDat = formatName + CODEC_SFX_DAT;
final int fieldsVersion = CodecUtil.checkHeader(fieldsStream, codecNameDat, VERSION_START, VERSION_CURRENT);
if (version != fieldsVersion) {
throw new CorruptIndexException("Version mismatch between stored fields index and data: " + version + " != " + fieldsVersion);
}
assert CodecUtil.headerLength(codecNameDat) == fieldsStream.getFilePointer(); if (version >= VERSION_BIG_CHUNKS) {
chunkSize = fieldsStream.readVInt();
} else {
chunkSize = -1;
}
packedIntsVersion = fieldsStream.readVInt();
//开始解析chunks
decompressor = compressionMode.newDecompressor();
this.bytes = new BytesRef(); success = true;
} finally {
if (!success) {
IOUtils.closeWhileHandlingException(this, indexStream);
}
}
}
1.2 存储域索引文件(.fdx)

- BlockEndMarker:该值为0,表示后面没有接着Block。因为Block不是以0开始的
- 这里的一个Block包含了多个chunk,chunk对应了.fdt的chunk。所以可以通过.fdx快速的定位到.fdt的chunk。
- Block有三部分组成,BlockChunks表示该block内含有的chunk的数量,DocBases表示了该block的第一个document的ID并可以通过它获取任意一个该block内的chunk的docbase,同理StartPointer表示了该block内所有的chunk在.fdt文件里的位置信息。
- DocBases由DocBase, AvgChunkDocs, BitsPerDocBaseDelta, DocBaseDeltas组成。DocBase是Block内的第一个document ID,AvgChunkDocs是Chunk内document平均个数,BitsPerDocBaseDelta是与AvgChunkDocs的差值,DocBaseDeltas是BlockChunks大小的数组,表示平均的doc base的差值。
- StartPointers由StartPointerBase(block的第一个指针,它对应DocBase),AvgChunkSize(chunk的平均大小,对应AvgChunkDocs), BitPerStartPointerDelta以及StartPointerDeltas组成
- 第N个chunk的起始docbase可以用如下公式计算:
DocBase + AvgChunkDocs * n + DocBaseDeltas[n] - 第N个chunk的起始point可以用如下公式计算:StartPointerBase + AvgChunkSize * n + StartPointerDeltas[n]
- .fdx文件的解析主要用到了 CompressingStoredFieldsFormat,其中以CompressingStoredFieldsIndexReader为例,查看如何读取.fdx文件:
// It is the responsibility of the caller to close fieldsIndexIn after this constructor
// has been called
CompressingStoredFieldsIndexReader(IndexInput fieldsIndexIn, SegmentInfo si) throws IOException {
maxDoc = si.getDocCount();
int[] docBases = new int[16];
long[] startPointers = new long[16];
int[] avgChunkDocs = new int[16];
long[] avgChunkSizes = new long[16];
PackedInts.Reader[] docBasesDeltas = new PackedInts.Reader[16];
PackedInts.Reader[] startPointersDeltas = new PackedInts.Reader[16];
//读取packedIntsVersion
final int packedIntsVersion = fieldsIndexIn.readVInt(); int blockCount = 0;
//开始遍历并读取所有block
for (;;) {
//numChunks即当做BlockChunks,表示一个Block内Chunks的个数;当Block读取完时候会读取一个为0的值即为BlocksEndMarker,
//表示已读取完所有 block。
final int numChunks = fieldsIndexIn.readVInt();
if (numChunks == 0) {
break;
}
//初始化时候,定义大小为16的数组docBases,startPointers,avgChunkDocs,avgChunkSizes表示16个模块。
//当Block大于16时候,会生成新的大小的数组,并将原数据复制过去。
if (blockCount == docBases.length) {
final int newSize = ArrayUtil.oversize(blockCount + 1, 8);
docBases = Arrays.copyOf(docBases, newSize);
startPointers = Arrays.copyOf(startPointers, newSize);
avgChunkDocs = Arrays.copyOf(avgChunkDocs, newSize);
avgChunkSizes = Arrays.copyOf(avgChunkSizes, newSize);
docBasesDeltas = Arrays.copyOf(docBasesDeltas, newSize);
startPointersDeltas = Arrays.copyOf(startPointersDeltas, newSize);
} // doc bases
//读取block的docBase
docBases[blockCount] = fieldsIndexIn.readVInt();
//读取avgChunkDocs,block中chunk内含有平均的document个数
avgChunkDocs[blockCount] = fieldsIndexIn.readVInt();
//读取bitsPerDocBase,block中与avgChunkDocs的delta的位数,根据这个位数获取docBasesDeltas数组内具体delta
final int bitsPerDocBase = fieldsIndexIn.readVInt();
if (bitsPerDocBase > 32) {
throw new CorruptIndexException("Corrupted bitsPerDocBase (resource=" + fieldsIndexIn + ")");
}
//获取docBasesDeltas值,docBasesDeltas是一个numChunks大小的数组,存放每一个chunk起始的docbase与avgChunkDocs的差值
docBasesDeltas[blockCount] = PackedInts.getReaderNoHeader(fieldsIndexIn, PackedInts.Format.PACKED, packedIntsVersion, numChunks, bitsPerDocBase); // start pointers
//读取block的startPointers
startPointers[blockCount] = fieldsIndexIn.readVLong();
//读取startPointers,chunk的平均大小
avgChunkSizes[blockCount] = fieldsIndexIn.readVLong();
//读取bitsPerStartPointer,block中与avgChunkSizes的delta的位数,根据这个位数获取startPointersDeltas数组内具体delta
final int bitsPerStartPointer = fieldsIndexIn.readVInt();
if (bitsPerStartPointer > 64) {
throw new CorruptIndexException("Corrupted bitsPerStartPointer (resource=" + fieldsIndexIn + ")");
}
//获取startPointersDeltas值,startPointersDeltas是一个numChunks大小的数组,
//存放每一个chunk起始的startPointer与avgChunkSizes的差值。
startPointersDeltas[blockCount] = PackedInts.getReaderNoHeader(fieldsIndexIn, PackedInts.Format.PACKED, packedIntsVersion, numChunks, bitsPerStartPointer); //下一个block
++blockCount;
}
//将遍历完的数据放入全局变量中
this.docBases = Arrays.copyOf(docBases, blockCount);
this.startPointers = Arrays.copyOf(startPointers, blockCount);
this.avgChunkDocs = Arrays.copyOf(avgChunkDocs, blockCount);
this.avgChunkSizes = Arrays.copyOf(avgChunkSizes, blockCount);
this.docBasesDeltas = Arrays.copyOf(docBasesDeltas, blockCount);
this.startPointersDeltas = Arrays.copyOf(startPointersDeltas, blockCount);
}
Solr4.8.0源码分析(12)之Lucene的索引文件(5)的更多相关文章
- Solr4.8.0源码分析(8)之Lucene的索引文件(1)
Solr4.8.0源码分析(8)之Lucene的索引文件(1) 题记:最近有幸看到觉先大神的Lucene的博客,感觉自己之前学习的以及工作的太为肤浅,所以决定先跟随觉先大神的博客学习下Lucene的原 ...
- Solr4.8.0源码分析(11)之Lucene的索引文件(4)
Solr4.8.0源码分析(11)之Lucene的索引文件(4) 1. .dvd和.dvm文件 .dvm是存放了DocValue域的元数据,比如DocValue偏移量. .dvd则存放了DocValu ...
- Solr4.8.0源码分析(10)之Lucene的索引文件(3)
Solr4.8.0源码分析(10)之Lucene的索引文件(3) 1. .si文件 .si文件存储了段的元数据,主要涉及SegmentInfoFormat.java和Segmentinfo.java这 ...
- Solr4.8.0源码分析(9)之Lucene的索引文件(2)
Solr4.8.0源码分析(9)之Lucene的索引文件(2) 一. Segments_N文件 一个索引对应一个目录,索引文件都存放在目录里面.Solr的索引文件存放在Solr/Home下的core/ ...
- Solr4.8.0源码分析(13)之LuceneCore的索引修复
Solr4.8.0源码分析(13)之LuceneCore的索引修复 题记:今天在公司研究elasticsearch,突然看到一篇博客说elasticsearch具有索引修复功能,顿感好奇,于是点进去看 ...
- Solr4.8.0源码分析(25)之SolrCloud的Split流程
Solr4.8.0源码分析(25)之SolrCloud的Split流程(一) 题记:昨天有位网友问我SolrCloud的split的机制是如何的,这个还真不知道,所以今天抽空去看了Split的原理,大 ...
- Solr4.8.0源码分析(24)之SolrCloud的Recovery策略(五)
Solr4.8.0源码分析(24)之SolrCloud的Recovery策略(五) 题记:关于SolrCloud的Recovery策略已经写了四篇了,这篇应该是系统介绍Recovery策略的最后一篇了 ...
- Solr4.8.0源码分析(23)之SolrCloud的Recovery策略(四)
Solr4.8.0源码分析(23)之SolrCloud的Recovery策略(四) 题记:本来计划的SolrCloud的Recovery策略的文章是3篇的,但是没想到Recovery的内容蛮多的,前面 ...
- Solr4.8.0源码分析(22)之SolrCloud的Recovery策略(三)
Solr4.8.0源码分析(22)之SolrCloud的Recovery策略(三) 本文是SolrCloud的Recovery策略系列的第三篇文章,前面两篇主要介绍了Recovery的总体流程,以及P ...
随机推荐
- 剪花布条 - HDU 2087(简单KMP | 暴力)
分析:基础的练习............... ============================================================================ ...
- [置顶] [混迹IT职场系列]一、转正的那些事儿
讲起转正,是每个IT人进入职场后要面对的第一关,只有越过这第一关卡才能更加顺利玩弄职场或被职场玩弄或互相玩弄. 很多人觉得转正只需自身努力即可,譬如有句话叫做 “只要功夫深,铁针磨成棒”.其实不然,职 ...
- Android 解屏幕锁与点亮屏幕(来电时效果)
PowerManager pm=(PowerManager) getSystemService(Context.POWER_SERVICE); //获取电源管理器对象 PowerManager.Wak ...
- 【AIX】采用vi语法编辑命令行
AIX中不能像centos那样移动方向键上.下来查询历史键入的命令行记录 可以通过一条命令采用vim的语法编辑命令行,查询历史记录. # set -o vi 在命令行输入上述命令后就可以: ESC+k ...
- Exception in thread "main" brut.androlib.err.UndefinedResObject: resource spec: 0x01030200(转)
反编译时遇到标题中的异常,根据描述,原因是找不到资源文件,最有可能的原因是apk中使用了系统资源. 解决办法如下: 从手机中导出framework-res.apk文件,该文件在/system/fram ...
- JPA事务回滚配置
<!-- 配置事务管理器 --> <bean id="transactionManager" class="org.springframework.or ...
- C#解leetcode 18. 4Sum
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = tar ...
- 5事件DOM零级事件跟DOM二级事件
事件的行为传播,行为本身跟事件绑定没有关系:1.全新认识事件(某一个具体的行为)->行为本身:浏览器天生自带的一些行为操作->click,mouseover(mouseenter),mou ...
- 【转】HttpServlet详解
[转]HttpServlet详解 Servlet的框架是由两个Java包组成:javax.servlet和javax.servlet.http. 在javax.servlet包中定义了所有的Servl ...
- sublime text There are no packages 解决!
1.问题如下图 解决如下: 1.取得sublime.wbond.net的IPv4地址.在命令提示符中输入以下命令: ping sublime.wbond.net 获得 pv 4 ip 2.C ...