题目大意:
有n只猫,有m只狗。现在有P个学生去参观动物园。每个孩子有喜欢的动物和不喜欢的动物。假如他喜欢猫那么他就一定不喜欢狗(反之亦然)。
如果一个孩子喜欢一个动物,那么这个动物不会被移除,若是不喜欢则移除。现在管理员想知道移除哪些动物可以使最大数量的孩子高兴。
输入数据:
输入包含多组测试实例。
第一行是三个数字n, m, p.
接下来p行。
每行 CX, DX 代表他喜欢第X只猫,讨厌第X只狗(反之亦然)
 
题目思路:
构图思路:我们把所有人进行构图,如果两个人之间有矛盾就建立一条边。然后求最大独立集就行了
二分图的最大独立集 : 二分图的最大独立集=图的点数  -  最大匹配数 
可以这样理解,在总的点集中,去掉最少的点,使得剩下的点相互之间没有边。用最少的点去覆盖所有的边,也就是最小覆盖。
 
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue>
#include<cmath>
using namespace std;
#define INF 0x3fffffff
#define maxn 505
int n, m, p, P[maxn], color[maxn];///n只猫 m只狗 p个人
bool G[maxn][maxn], vis[maxn];///构图
vector<vector<int> > LikeDog;///喜欢第k只狗的人邻接表
vector<vector<int> > DisDog;///不喜欢这只够的人的集合
vector<vector<int> > LikeCat;///同上
vector<vector<int> > DisCat; void Init()
{
LikeDog.clear();
LikeDog.resize(m+);
LikeCat.clear();
LikeCat.resize(n+); DisDog.clear();
DisDog.resize(m+);
DisCat.clear();
DisCat.resize(n+);
memset(G, false, sizeof(G) );
} void MakeMap()
{
for(int i=; i<=m; i++)
{
int len1 = LikeDog[i].size();
int len2 = DisDog[i].size();
for(int j=; j<len1; j++)
{
int v1 = LikeDog[i][j];
for(int k=; k<len2; k++)
{
int v2 = DisDog[i][k];
G[v1][v2] = true;
G[v2][v1] = true;
}
}
} for(int i=; i<=n; i++)
{
int len1 = LikeCat[i].size();
int len2 = DisCat[i].size();
for(int j=; j<len1; j++)
{
int v1 = LikeCat[i][j];
for(int k=; k<len2; k++)
{
int v2 = DisCat[i][k];
G[v1][v2] = true;
G[v2][v1] = true;
}
}
}
}
bool Find(int u)
{
for(int i=; i<=p; i++)
{
if(!vis[i] && G[u][i])
{
vis[i] = true;
if(P[i] == - || Find(P[i]) )
{
P[i] = u;
return true;
}
}
}
return false;
}
void DFS(int u,int Color)
{
color[u] = Color;
for(int i=; i<=p; i++)
{
if(G[u][i] && !color[i])
{
DFS(i, -Color);
}
}
} int solve()
{
int ans = ;
memset(P, -, sizeof(P));
memset(color, , sizeof(color)); for(int i=; i<=p; i++)
{
if(color[i] == )
DFS(i, );
}
for(int i=; i<=p; i++)
{
memset(vis, false, sizeof(vis));
if(color[i] == && Find(i) )
ans ++;
}
return p - ans;
} int main()
{
while(scanf("%d %d %d ",&n, &m, &p) != EOF)
{
char ch1, ch2;
int a, b;
Init();
for(int i=; i<=p; i++)
{
scanf("%c%d %c%d",&ch1, &a, &ch2, &b);
getchar();
if(ch1 == 'C')
{
LikeCat[a].push_back(i);
DisDog[b].push_back(i);
}
else
{
LikeDog[a].push_back(i);
DisCat[b].push_back(i);
}
}
MakeMap();
printf("%d\n", solve() );
}
return ;
}

HDU 3829 Cat VS Dog(最大独立集)的更多相关文章

  1. HDU 3829 Cat VS Dog (最大独立集)【二分图匹配】

    <题目链接> 题目大意: 动物园有n条狗.m头猫.p个小孩,每一个小孩有一个喜欢的动物和讨厌的动物.如今动物园要转移一些动物.假设一个小孩喜欢的动物在,不喜欢的动物不在,他就会happy. ...

  2. HDU 3829 Cat VS Dog / NBUT 1305 Cat VS Dog(二分图最大匹配)

    HDU 3829 Cat VS Dog / NBUT 1305 Cat VS Dog(二分图最大匹配) Description The zoo have N cats and M dogs, toda ...

  3. HDU 3829——Cat VS Dog——————【最大独立集】

    Cat VS Dog Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit S ...

  4. hdu 3829 Cat VS Dog 二分图匹配 最大点独立集

    Cat VS Dog Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Prob ...

  5. HDU 3829 - Cat VS Dog (二分图最大独立集)

    题意:动物园有n只猫和m条狗,现在有p个小孩,他们有的喜欢猫,有的喜欢狗,其中喜欢猫的一定不喜欢狗,喜欢狗的一定不喜欢猫.现在管理员要从动物园中移除一些动物,如果一个小孩喜欢的动物留了下来而不喜欢的动 ...

  6. HDU - 3829 Cat VS Dog (二分图最大独立集)

    题意:P个小朋友,每个人有喜欢的动物和讨厌的动物.留下喜欢的动物并且拿掉讨厌的动物,这个小朋友就会开心.问最多有几个小朋友能开心. 分析:对于每个动物来说,可能既有人喜欢又有人讨厌,那么这样的动物实际 ...

  7. hdu 3829 Cat VS Dog 二分匹配 最大独立点集

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3829 题目大意: 给定N个猫,M个狗,P个小朋友,每个小朋友都有喜欢或者不喜欢的某猫或者某狗 管理员从 ...

  8. HDU 3829 Cat VS Dog

    题意: p个人  每一个人有喜欢和讨厌的动物  假设选出的动物中包括这个人喜欢的动物同一时候不包括他讨厌的动物那么这个人会开心  问  最多几个人开心 思路: 二分图最大独立集  利用人与人之间的冲突 ...

  9. hdu 2768 Cat vs. Dog 最大独立集 巧妙的建图

    题目分析: 一个人要不是爱狗讨厌猫的人,要不就是爱猫讨厌狗的人.一个人喜欢的动物如果离开,那么他也将离开.问最多留下多少人. 思路: 爱猫和爱狗的人是两个独立的集合.若两个人喜欢和讨厌的动物是一样的, ...

随机推荐

  1. Java基础知识强化之集合框架笔记25:Vector的特有功能

    1. Vector的特有功能: (1)添加功能         public void addElement(Object obj)       -- add() (2)获取功能         pu ...

  2. Android&Java的学习新的等

    学习资料 很久没写博客了.适逢这次Srtp项目学弟学妹们要学习Java与Android,我就总结一些学习的教材.方法,分享写材料与心得.纯个人观点,如有不周之处欢迎指出,大家共同探讨提高. *** 教 ...

  3. div css背景图片不显示

    我们在写页面时,为了便于维护,css样式通常都是通过link外部导入html的,有时在css中写入背景图片时,此时背景图片的路径应该是相对css文件的.比如,此时的文件有index.html,css. ...

  4. MVC打包压缩JS&CSS文件调试时过滤了一些文件

    BundleTable.这个确实是比较好用,打包并压缩了CSS,使之加载时减少流量. 但是在调试的时候会疑问为何有很多JS,CSS文件无法打包,其实是因为调试时VS自动过滤了如下文件:   后台跟踪了 ...

  5. 硬编码写RadioGroup的时候要注意设置RadioButton的Id

    硬编码写RadioGroup的时候要注意RadioButton的id重复问题,导致选择的时候出现能够多选的情况发生,如下代码,注意Id的设置,这样避免Radiobutton的id重复. /** * 生 ...

  6. 在vSphere5.0虚拟机里的Ubuntu Server 32位安装JDK

    本机操作系统Win7 服务器用vSphere 5.0 虚拟机  在虚拟机安装了Ubuntu Server 12.04 1.首先到Oracle官网上下载jdk-7u51-linux-i586.tar.g ...

  7. Premature optimization is the root of all evil.

    For all of we programmers,we should always remember that "Premature optimization is the root of ...

  8. webServices 执行流程,(我是菜鸟,我怕谁,仅代表个人理解,欢迎各位大神们指导,不和您的胃口,请默默离开!!)

    二.上图仅仅代表个人理解,下面以代码方式解释一下. (1) strtus.xml <?xml version="1.0" encoding="UTF-8" ...

  9. oracle安装遇到的问题

    这两天要做一个项目,教师招聘系统.要用oracle.就安装了oracle 12c,安装的过程中遇到了一些问题,最后自己解决了.我是win7系统. 第一个报错: [INS-30131]执行安装程序验证所 ...

  10. ios strong weak 的区别 与 理解

    先一句话总结:strong类保持他们拥有对象的活着,weak类他们拥有的对象被人家一牵就牵走,被人家一干就干死.(strong是一个好大哥所以strong,呵呵,weak是一个虚大哥所以weak,呵呵 ...