BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)
描述
http://www.lydsy.com/JudgeOnline/problem.php?id=1004
共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的染色方案视为等价的,求等价类计数.
分析
给出置换求等价类计数,用Burnside引理:等价类计数=(每一个置换不动点的和)/置换数.(不知道的建议去看白书)
其中不动点是指一个染色方案经过置换以后染色与之前完全相同.
1.求不动点个数.
不动点的话同一个循环内的每一个点的颜色必须相同(否则不同颜色交界的地方置换以后颜色就与之前不同了).用f[r][b][g]表示R选了r个,B选了b个,G选了g个的方案数.f[0][0][0]=1.转移方程比较简单,类似背包.
2.除法取余.
要用到乘法逆元.逆元的定义类似将倒数的定义推广了.a模p的逆元记作a^-1. aa^-1=1(mod p).然后在除法的时候用乘逆元来代替除法.
逆元的求法可以用exgcd,也可以用费马小定理.
费马小定理:两个互质的数a,b,a模b的逆元为a^(b-2).用快速幂就好了.
p.s.
1.iwtwiioi神犇的代码真是简短...
#include <bits/stdc++.h>
using namespace std; const int maxn=+;
int n,m,sr,sb,sg,p,ans;
int a[maxn],s[maxn];
int f[][][];
bool vis[maxn];
int qpow(int a,int b){
int ret=;
for(;b;a=(a*a)%p,b>>=) if(b&) ret=(ret*a)%p;
return ret;
}
int get(){
int cnt=; memset(f,,sizeof f); memset(s,,sizeof s); memset(vis,false, sizeof vis);
for(int i=;i<=n;i++)if(!vis[i]){ cnt++; for(int j=i;!vis[j];j=a[j]) vis[j]=true, s[cnt]++; }
f[][][]=;
for(int i=;i<=cnt;i++)for(int r=sr;r>=;r--)for(int b=sb;b>=;b--)for(int g=sg;g>=;g--){
if(r>=s[i]) f[r][b][g]=(f[r][b][g]+f[r-s[i]][b][g])%p;
if(b>=s[i]) f[r][b][g]=(f[r][b][g]+f[r][b-s[i]][g])%p;
if(g>=s[i]) f[r][b][g]=(f[r][b][g]+f[r][b][g-s[i]])%p;
}
return f[sr][sb][sg];
}
int main(){
scanf("%d%d%d%d%d",&sr,&sb,&sg,&m,&p);
n=sr+sb+sg;
for(int i=;i<=m;i++){ for(int j=;j<=n;j++) scanf("%d",&a[j]); ans=(ans+get())%p; }
for(int i=;i<=n;i++) a[i]=i; ans=(ans+get())%p;
ans=(ans*qpow(m+,p-))%p;
printf("%d\n",ans);
return ;
}
1004: [HNOI2008]Cards
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 2820 Solved: 1687
[Submit][Status][Discuss]
Description
小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有
多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方
案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.
两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗
成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).
Input
第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。
接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,
表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代
替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。
Output
不同染法除以P的余数
Sample Input
2 3 1
3 1 2
Sample Output
HINT
有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG
和GRB。
100%数据满足 Max{Sr,Sb,Sg}<=20。
Source
BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)的更多相关文章
- hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)
A/B Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- CodeForces 300C Beautiful Numbers(乘法逆元/费马小定理+组合数公式+高速幂)
C. Beautiful Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- UVALive 7040 Color (容斥原理+逆元+组合数+费马小定理+快速幂)
题目:传送门. 题意:t组数据,每组给定n,m,k.有n个格子,m种颜色,要求把每个格子涂上颜色且正好适用k种颜色且相邻的格子颜色不同,求一共有多少种方案,结果对1e9+7取余. 题解: 首先可以将m ...
- 【费马小定理+快速幂+逆元】BZOJ3240-[NOI2013]矩阵游戏
[题目大意] 若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i][j]满足下面的递推式:F[1][1]=1F[i,j]=a*F[i][j-1]+b (j!=1)①F[i,1]=c*F[i-1 ...
- 51nod A 魔法部落(逆元费马小定理)
A 魔法部落 小Biu所在的部落是一个魔法部落,部落中一共有n+1个人,小Biu是魔法部落中最菜的,所以他的魔力值为1,魔法部落中n个人的魔法值都不相同,第一个人的魔法值是小Biu的3倍,第二个人的魔 ...
- HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))
Invoker Time Limit : 2000/1000ms (Java/Other) Memory Limit : 122768/62768K (Java/Other) Total Subm ...
- 【BZOJ】3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛(排列组合+乘法逆元+欧拉定理/费马小定理)
http://www.lydsy.com/JudgeOnline/problem.php?id=3398 以下牡牛为a,牝牛为b. 学完排列计数后试着来写这题,“至少”一词可以给我们提示,我们可以枚举 ...
- hihocoder #1698 假期计划 (排列组合+费马小定理+乘法逆元)
Description 小Ho未来有一个为期N天的假期,他计划在假期中看A部电影,刷B道编程题.为了劳逸结合,他决定先拿出若干天看电影,再拿出若干天刷题,最后再留若干天看电影.(若干代指大于0) 每 ...
- 简记乘法逆元(费马小定理+扩展Euclid)
乘法逆元 什么是乘法逆元? 若整数 \(b,m\) 互质,并且\(b|a\) ,则存在一个整数\(x\) ,使得 \(\frac{a}{b}\equiv ax\mod m\) . 称\(x\) 是\( ...
随机推荐
- Apache配置多个监听端口
以前做PC上的,都是配置一个端口,整一大堆的虚拟目录: 在 \conf\extra下找到httpd-vhosts.conf这个配置文件,想下面这样配置就行,监听80端口,访问相应的ServerName ...
- 关于insertBefore
insertBefore,看名字就是在某个元素前插入元素,但是其实它可以再文档任何元素强势插入. insertBefore用法: parent.insertBefore(newChild, refCh ...
- 2016/01/19 javascript学习笔记-name属性
1. name属性只在少数html元素中有效:包括表单.表单元素.<iframe>和<img>元素. 基于name属性的值选取html元素,可以使用document对象的get ...
- Eclipse Memory Analysis进行堆转储文件分析
生成堆转储文件 新建项目,设置Eclispe Java堆的大小: (1)限制Java堆大小:将最小值 -Xms参数与最大值-Xmx参数设置一样可避免堆的扩展 -Xmx20m -Xms2 ...
- android开发 单击按钮 实现页面间的跳转
我的MainActivity.java部分代码 public class MainActivity extends ActionBarActivity { //不要定义button类型,会出错 Vie ...
- 模板:函数memcpy
函数原型 void *memcpy(void *dest, const void *src, size_t n); 2功能 从源src所指的内存地址的起始位置开始拷贝n个字节到目标dest所指的内存地 ...
- CentOS上无法识别NTFS格式分区的解决方法
插入U盘之后,按照下面的步骤: # fdisk -l /dev/sd* 通常这一步就能找到U盘,如果U盘有指示灯也会亮,表示被找到. # mount –t ntfs /dev/sdb1 /mnt/ ...
- LESS语法备忘
变量 很容易理解: @nice-blue: #5B83AD; @light-blue: @nice-blue + #111; #header { color: @light-blue; } 输出: # ...
- PHP学习心得(一)——简介
PHP(“PHP: Hypertext Preprocessor”,超文本预处理器的字母缩写)是一种被广泛应用的开放源代码的多用途脚本语言,它可嵌入到 HTML中,尤其适合 web 开发. PHP 脚 ...
- SQL中约束和触发器的停用与启用
如何对SQL中的约束和触发器进行停用与启用,如果有外键约束则相关联表都要进行相应操作. ALTER TABLE TableName CHECK CONSTRAIT ALL --检查约束 ALTER T ...