机器学习实战 一书中第20页数据预处理,从文本中解析数据的程序。
 import numpy as np
def dataPreProcessing(fileName):
with open(fileName) as op:
lines=op.readlines()
# 返回值是list
lineNumer=len(lines)
# list长度即文件中的行数
dataMatrix=np.zeros((lineNumer,3))
# 初始化lineNumer行,3列的全0矩阵,注意双层括号
labelVector=[]
# 标记向量初始化,它在目前是一个空的list
index=0
# 索引,为了后面给数据矩阵和标记向量初始化用的
for line in lines:
line=line.strip()
# 去空格
temp=line.split('\t')
# 按换行符分割数据,返回list
dataMatrix[index,:]=temp[0:3]
# 切片操作,dataMatrix[a,b:c]后的方括号中第一个值表示矩阵行号(从0开始)
# 第二、三个参数代表从b开始,c结束,前开后闭,包含b不包含c的元素
# temp中的两个参数同理
# 将temp中的前3个值赋给dataMatrix
labelVector.append(int(temp[-1]))
# 将temp中的最后一个值赋给labelVector,注意强转类型,不强转取到的类型为string
index=index+1
return dataMatrix,labelVector
# arr=np.array([[0,1,2],[3,4,5],[6,7,8]])
# print(arr[2,:])
fileName='./datingTestSet2.txt'
# “/”:表示根目录,在windows系统下表示某个盘的根目录,如“E:\”;
# “./”:表示当前目录;(表示当前目录时,也可以去掉“./”,直接写文件名或者下级目录)
# “../”:表示上级目录。
a,b=dataPreProcessing(fileName)
print(a,b)

附:今晚很郁闷,pycharm启动慢得要死,Numpy又用不了,好不容易才用清华镜像把numpy升级到可用状态,期间pycharm卡死了好几次,ukylin的虚拟机更卡,气得我想把电脑砸了,以后有替代的ide了再也不用pycharm了

---------------------------------------------------------------------------------------
2020-02-15更新
读取txt文件中的数据
testArray=genfromtxt(fileName,delimiter="\t",dtype=str)
# 文件名、分隔符、读取的数据以什么类型返回
# print('testArray=\n',testArray)
# print(testArray.shape)
# print(testArray.dtype)
testLabels=testArray[:,3]
testLabels=testLabels.astype(int)
# 矩阵切片,取出所有行第3列,其中:表示所有行
print('testLabels\n',testLabels)
print(testLabels.shape)
testInfo=testArray[:,0:3]
# 读取每一行的前3列,这里的0:3是左闭右开区间
testInfo=testInfo.astype(float)
print('testInfo:\n',testInfo)

  今晚又重温了 “唐宇迪\1章Python科学计算库—numpy”课程系列中的 05-07三节内容,其中《课时07.Numpy矩阵基础》只看到了3'12''

python数据预处理for knn的更多相关文章

  1. Python数据预处理:机器学习、人工智能通用技术(1)

    Python数据预处理:机器学习.人工智能通用技术 白宁超  2018年12月24日17:28:26 摘要:大数据技术与我们日常生活越来越紧密,要做大数据,首要解决数据问题.原始数据存在大量不完整.不 ...

  2. python data analysis | python数据预处理(基于scikit-learn模块)

    原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Fe ...

  3. Python数据预处理—归一化,标准化,正则化

    关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的 ...

  4. Python数据预处理之清及

    使用Pandas进行数据预处理 数据清洗中不是每一步都是必须的,按实际需求操作. 内容目录 1.数据的生成与导入 2.数据信息查看 2.1.查看整体数据信息 2.2.查看数据维度.列名称.数据格式 2 ...

  5. Python数据预处理(sklearn.preprocessing)—归一化(MinMaxScaler),标准化(StandardScaler),正则化(Normalizer, normalize)

      关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常 ...

  6. python数据预处理和特性选择后列的映射

    我们在用python进行机器学习建模时,首先需要对数据进行预处理然后进行特征工程,在这些过程中,数据的格式可能会发生变化,前几天我遇到过的问题就是: 对数据进行标准化.归一化.方差过滤的时候数据都从D ...

  7. Python数据预处理:使用Dask和Numba并行化加速

    如果你善于使用Pandas变换数据.创建特征以及清洗数据等,那么你就能够轻松地使用Dask和Numba并行加速你的工作.单纯从速度上比较,Dask完胜Python,而Numba打败Dask,那么Num ...

  8. Python数据预处理—训练集和测试集数据划分

    使用sklearn中的函数可以很方便的将数据划分为trainset 和 testset 该函数为sklearn.cross_validation.train_test_split,用法如下: > ...

  9. 关系网络数据可视化:2. Python数据预处理

    将数据中导演与演员的关系整理出来,得到导演与演员的关系数据,并统计合作次数 import numpy as np import pandas as pd import matplotlib.pyplo ...

随机推荐

  1. 自定义jqGrid编辑功能,当行获取焦点时编辑,失去焦点时保存

    http://www.360doc.com/content/17/0719/15/9200790_672577533.shtml /********************************** ...

  2. GAN评价指标之mode score

    通过 Inception Score 的公式我们知道,它并没有利用到真实数据集的信息,所有的计算都在生成的图片上计算获得.而 Mode Score 基于此做了改进: 也就是说,想要提高 Mode Sc ...

  3. 吴裕雄--天生自然C++语言学习笔记:C++ 引用

    引用变量是一个别名,也就是说,它是某个已存在变量的另一个名字.一旦把引用初始化为某个变量,就可以使用该引用名称或变量名称来指向变量 C++ 引用 vs 指针 引用很容易与指针混淆,它们之间有三个主要的 ...

  4. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 字体图标(Glyphicons):glyphicon glyphicon-adjust

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...

  5. junit基础学习之-参数初始化(5)

    package swust.edu.cn.postdoctors.service.impl; import java.util.Arrays; import java.util.Collection; ...

  6. java基础源码 (5)--reflect包-AccessibleObject类

    学习参考博客:https://blog.csdn.net/benjaminzhang666/article/details/9664585AccessibleObject类基本作用 1.将反射的对象标 ...

  7. (五)selenuim和phantonJs处理网页动态加载数据的爬取

    selenuim和phantonJs处理网页动态加载数据的爬取 一 图片懒加载 自己理解------就是在打开一个页面的时候,图片数量特别多,图片加载会增加服务器的压力,所以我们在这个时候,就会用到- ...

  8. c++程序—浮点数

    #include<iostream> using namespace std; int main() { //2.单精度float //3.双精度double //默认情况下会输出6位有效 ...

  9. HDU 5480:Conturbatio 前缀和

    Conturbatio Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tota ...

  10. 关于SI522替代FM17522和MFRC522的资料对比

    以下是SI522与FM17522.MFRC522的对比参数: SI522是完全PIN对PIN软硬件兼容MFRC522.CV520.FM17522,另外我们可提供一对一技术支持解决客户所遇到的问题: 1 ...