win10//ubuntu安装tensorflow-gpu与kears,并用minist测试
WIn10
安装cuda
先安装VS,然后根据自己的版本安装CUDA、
安装完后,打开cmd命令行输入nvcc -V,检测是否安装成功
安装cuDDN
安装对应版本,解压后覆盖到CUDA的地址,默认为C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1
使用anaconda安装tensorflow-gpu
创建一个新的环境
conda create -n env_name python=version
激活并进入环境中
conda activate tensorflow
更换清华源(https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/)(也可使用其他源)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
安装
conda install tensorflow-gpu (或者是pip,注意版本,这里是1.x,需要安装keras,后续keras已经自带,不需要单独安装)
测试
安装keras
conda install keras
使用jupyter
Jupyter Notebook
添加其他conda虚拟环境
https://blog.csdn.net/u011606714/article/details/77741324
Ubunt/18.04
1、安装驱动
2、nvidia-smi,查看自己的驱动和CUDA版本,没有cuda也可以在conda里装
3、安装anaconda
4、新建一个虚拟环境
5、激活虚拟环境,以下操作在虚拟环境中进行conda create -n env_name python=version
pip 和 conda 更新清华源 https://mirrors.tuna.tsinghua.edu.cn/help/pypi/
6、conda list 看有没有cuda,cudnn,没有的话再装(conda install cudatoolkit conda install cudnn)
7、conda install python==3.7 ,安装python是为了后面使用虚拟环境的python,不会和本机环境打架(如果已经装了,就不用再装了)
8、pip install tensorflow-gpu
(安装的是tf2,里面自带keras。如果需要其他版本自行设定。 注意!!! tf2-gpu 需要cuda10.0,10.1会报错,至少截止目前(2019.11.20)是这样)
updata 2020.1.8
conda search tensorflow-gpu
conda install tensorflow-gpu=2.0.0
遇到的问题(重点):
记录遇到的一些环境问题
目前已知tf2-gpu无法在cuda10.1上运行,错误提示:缺少动态链接库
退回到cuda10.0,cudnn7,6,遇到Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR
在 https://github.com/tensorflow/tensorflow/issues/24496 找到解决办法
```
import tensorflow as tf
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config)
```
或者是
```
physical_devices = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(physical_devices[0], True)
```
这个的意思大概是tf会默认占用所有闲置现存,然后加上这个后,就动态分配现存
看评论说,这个问题多出现在RTX显卡上。而且这种解决方法会影响速度,暂时没有其他方法
下面用搭建CNN测试环境
import tensorflow as tf
from tensorflow.keras import datasets, layers, models, losses '''
第一步:选择模型
'''
model = models.Sequential()
'''
第二步:构建网络层
'''
# 第1层卷积,卷积核大小为3*3,32个,28*28为待训练图片的大小
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
# 第2层卷积,卷积核大小为3*3,64个
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# 第3层卷积,卷积核大小为3*3,64个
model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax')) model.summary() '''
第三步:编译
'''
# sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) # 优化函数,设定学习率(lr)等参数
# 使用交叉熵作为loss函数
# compile()方法只有三个参数: 优化器optimizer,损失函数loss和指标列表metrics
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']) '''
第四步:训练
.fit的一些参数
batch_size:对总的样本数进行分组,每组包含的样本数量
epochs :训练次数
shuffle:是否把数据随机打乱之后再进行训练
validation_split:拿出百分之多少用来做交叉验证
verbose:屏显模式 0:不输出 1:输出进度 2:输出每次的训练结果
validation_data:指定验证集, 此参数将覆盖validation_spilt。
'''
(X_train, Y_train), (X_test, Y_test) = datasets.mnist.load_data()
# 使用Keras自带的mnist工具读取数据(第一次需要联网)
# 由于mist的输入数据维度是(num, 28, 28),这里需要把后面的维度直接拼起来变成784维
X_train = X_train.reshape(X_train.shape[0], 28, 28, 1).astype('float32') / 255
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1).astype('float32') / 355 model.fit(X_train, Y_train, batch_size=200,
epochs=20, validation_split=0.2, verbose=1) '''
第五步:输出结果
'''
scores = model.evaluate(X_test, Y_test, batch_size=200)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
从本地读取npz格式数据minist
from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds FILE_PATH = '/xxx/mnist.npz' with np.load(FILE_PATH) as data:
train_examples = data['x_train'] / 255.0
train_labels = data['y_train']
test_examples = data['x_test'] / 255.0
test_labels = data['y_test'] train_dataset = tf.data.Dataset.from_tensor_slices((train_examples, train_labels))
test_dataset = tf.data.Dataset.from_tensor_slices((test_examples, test_labels)) BATCH_SIZE = 64
SHUFFLE_BUFFER_SIZE = 100 train_dataset = train_dataset.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE)
test_dataset = test_dataset.batch(BATCH_SIZE) model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
]) model.compile(optimizer=tf.keras.optimizers.RMSprop(),
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]) model.fit(train_dataset, epochs=10) model.evaluate(test_dataset)
ubuntu解决终端不走vpn
export http_proxy="http://localhost:port"
export https_proxy="http://localhost:port"
再推荐一个好用的下载软件
axel
安装:
sudo apt-get install axel
- 一般使用:axel url(下载文件地址)
- 限速使用:加上 -s 参数,如 -s 10240,即每秒下载的字节数,这里是 10 Kb
- 限制连接数:加上 -n 参数,如 -n 5,即打开 5 个连接
win10//ubuntu安装tensorflow-gpu与kears,并用minist测试的更多相关文章
- ubuntu安装 tensorflow GPU
安装支持GPU的tensorflow前提是正确安装好了 CUDA 和 cuDNN. CUDA 和 cuDNN的安装见 Nvidia 官网和各种安装教程,应该很容易,重点是要选准了支持自己GPU的 CU ...
- 【Tensorflow】Ubuntu 安装 Tensorflow gpu
安装环境:Ubuntu 16.04lts 64位,gcc5.4 1.安装Cuda 1. 下载cuda toolkit. 下载cuda8.0 地址:https://developer.nvidia.co ...
- Ubuntu在Anaconda中安装TensorFlow GPU,Keras,Pytorch
安装TensorFlow GPU pip install --ignore-installed --upgrade tensorflow-gpu 安装测试: $ source activate tf ...
- 通过Anaconda在Ubuntu16.04上安装 TensorFlow(GPU版本)
一. 安装环境 Ubuntu16.04.3 LST GPU: GeForce GTX1070 Python: 3.5 CUDA Toolkit 8.0 GA1 (Sept 2016) cuDNN v6 ...
- win10系统下安装TensorFlow GPU版本
首先要说,官网上的指南是最好的指南. https://www.tensorflow.org/install/install_windows 需要FQ看. 想要安装gpu版本的TensorFlow.我们 ...
- ubuntu16.04下安装TensorFlow(GPU加速)----详细图文教程【转】
本文转载自:https://blog.csdn.net/zhaoyu106/article/details/52793183 le/details/52793183 写在前面 一些废话 接触深度学习已 ...
- ubuntu 安装TensorFlow
1.安装pip $ sudo apt-get install python-pip python-dev 2.安装 TensorFlow for Python 2.7 # Ubuntu/Linux - ...
- win10+anaconda安装tensorflow和keras遇到的坑小结
win10下利用anaconda安装tensorflow和keras的教程都大同小异(针对CPU版本,我的gpu是1050TI的MAX-Q,不知为啥一直没安装成功),下面简单说下步骤. 一 Anaco ...
- Win10上安装TensorFlow(官方文档翻译)
一.推荐两个网站 TensorFlow官方文档:https://www.tensorflow.org/install/install_windows TensorFlow中文社区:http://www ...
- windows安装tensorflow GPU
一.安装Anaconda Anaconda是Python发行包,包含了很多Python科学计算库.它是比直接安装Python更好的选择. 二.安装Tensorflow 如果安装了tensorflow, ...
随机推荐
- git 一些操作
1. 代码相关 克隆代码 git clone xxx.git 拉取代码 git pull 查看 修改的 状态 git status 推送代码 git push add 或者 修改代码之后 回滚到 未修 ...
- (转)jpbc的基本函数介绍
双线性群简介 质数阶双线性群(Prime-Order Bilinear Groups) 质数双线性群可以由五元组(p,G1,G2,GT,e)来描述.五元组中p是一个与给定安全常数λ相关的大质数,G1, ...
- UVALive 4670 AC自动机
第二道AC自动机的题目了,之前参考的是网上一个博客算法,不怎么好,难写而且占空间 后来参照大白书做的这题,代码简洁多了 #include <iostream> #include <c ...
- 五步解决windows系统慢的问题
第一步:清理浏览器缓存 第二步:磁盘整理 第三步:碎片整理 第四步:清理系统临时文件 echo 正在清除系统垃圾文件,请稍等...... del /f /s /q %systemdrive%\*.tm ...
- one_day_one_linuxCmd---tar命令
<坚持每天学习一个 linux 命令,今天我们来学习 tar 命令> 摘要:tar 命令是一个 Linux 下的打包程序,通常在 Linux 下,打包和压缩是不同的程序,打包通过 tar ...
- 从Evernote大批顶尖高管离职,看处于漩涡中的笔记应用未来前景
无论是巨头,还是独角兽,甚至是小而美的某些企业,在发生高管离职.裁员等情况时,总会引起业界的广泛关注.究其原因,就在于高管离职.裁员等往往意味着企业内部发生了动荡,甚至还会直接反映出所在行业的发展趋势 ...
- Centos配置NAT模式下的静态ip
一.查看所在的ip段 点击 编辑-->虚拟网卡编辑器 选中vmware8网卡,点击 DHCP设置 二.编辑网卡配置文件 查看网卡 ip addr 命令打开配置文件 vi /etc/sysconf ...
- How to get AutoCAD Mtext content
#region 提取一个图层上的各类元素 [CommandMethod("BlockInLayerCAD")] public void BlockInLayerCAD() { Do ...
- python加速
之前一直用 conda版python, 发现可以直接装intel的numpy了. https://software.intel.com/en-us/articles/installing-the-in ...
- HDU-4460 Friend Chains(BFS&权为1所有最短路的最大值)
题目: For a group of people, there is an idea that everyone is equals to or less than 6 steps away fro ...