DAG上的动态规划:

有向无环图上的动态规划是学习DP的基础,很多问题都可以转化为DAG上的最长路、最短路或路径计数问题。

1.没有明确固定起点重点的DAG模型:

嵌套矩形问题:有n个矩形,每个矩形可以用两个整数a、b表示它的长和宽,矩形可以嵌套在矩形中当且仅当a<c,b<d或者b<c,a<d。选出尽量多的矩形排成一行,使得除了最后一个之外,每个矩形都可以嵌套在下一个矩形内。如果有多解矩形编号字典序应尽量小。

 /**
* 嵌套矩形问题:有n个矩形,每个矩形可以用两个整数a、b表示它的长和宽,
* 矩形可以嵌套在矩形中当且仅当a<c,b<d或者b<c,a<d。选出尽量多的矩形排成一行,使得除了最后一个之外,每个矩形都可以嵌套在下一个矩形内。如果有多解矩形编号字典序应尽量小。
*/
static int[] d= {-1,-1,-1,-1,-1,-1};
static int[][]a=new int[6][6]; public static void getA(ErYuan[] es) {//建立单向无环图
for(int i=0;i<es.length;i++) {
for(int j=0;j<es.length;j++) {
if(es[i].isOk(es[j])) {
a[i][j]=1;
}
}
}
} public static int dp(int i) {//从i开始的最大嵌套矩形个数
if(d[i]>=0) {
return d[i];
}
d[i]=0;
for(int j=0;j<d.length;j++) {
if(a[i][j]==1) {
d[i]=Math.max(d[i],1+dp(j));
}
}
return d[i];
} public static void test(int i,String head) {//找到d[i]中的最大值,按字典序输出路径们
head=head+i;
if(d[i]==0)
{
System.out.println(head);
}
String str="";
for(int j=0;j<d.length;j++) {
if(a[i][j]==1&&d[i]==d[j]+1) {
test(j,head);
}
}
}
public static void main(String[] args) {
Scanner scn=new Scanner(System.in);
ErYuan[] es=new ErYuan[6];
for(int i=0;i<6;i++) {
int x=scn.nextInt();
int y=scn.nextInt();
es[i]=new ErYuan(x,y);
}
getA(es);
for(int i=0;i<d.length;i++) {
dp(i);
}
int max=0;
for(int i=1;i<d.length;i++) {
max=d[max]>=d[i]?max:i;
}
for(int i=max;i<d.length;i++) {
if(d[i]==d[max]) {
test(i,"");
}
}
}
 class ErYuan{
int x;
int y;
public boolean isOk(ErYuan e) {
if((x<e.x&&y<e.y)||(e.x>y&&e.y>x)){
return true;
}
return false; }
public ErYuan(int x, int y) {
super();
this.x = x;
this.y = y;
} }

 2.固定终点的最长路和最短路

硬币问题:有n种硬币,面值分别为v1..vn,每种都有无限多,给定非负整数S。可以选用多少个硬币,使得面值之和恰好为S?输出硬币的最小值和最大值1<=n<100,0<=S<=10000,1<=vi<=S

     static int[]d=new int[10];
static int[]vis=new int[10];
static int[]v=new int[5];
/**
* 硬币问题:有n种硬币,面值分别为v1..vn,每种都有无限多,给定非负整数S。
* 可以选用多少个硬币,使得面值之和恰好为S?
*/
/**
* S->0的路径长度
* @param S
*/
public static int dp(int S) {
if(vis[S]==1)return d[S];
vis[S]=1;
for(int i=0;i<vis.length;i++)if(vis[i]<=S)d[S]=Math.max(d[S], dp(S-vis[i])+1);
return d[S];
}

如果要打印出来就同上,可以用递推或者储存的方式打印出来,储存的话用空间换取时间。

3.小结

传统的递推法可以表示成“对于每个状态i,计算f(i)",或者称为“填表法”.这需要对于每个状态i,找到f(i)依赖的所有状态。

刷表法:对于每个状态i,更新f(i)所影响的状态。只有当每个状态所依赖的对它的影响相互独立时才能用刷表法。

第九章(二)DAG上的动态规划的更多相关文章

  1. UVA 1025 "A Spy in the Metro " (DAG上的动态规划?? or 背包问题??)

    传送门 参考资料: [1]:算法竞赛入门经典:第九章 DAG上的动态规划 题意: Algorithm城市的地铁有 n 个站台,编号为 1~n,共有 M1+M2 辆列车驶过: 其中 M1 辆列车从 1 ...

  2. UVa 103 Stacking Boxes --- DAG上的动态规划

    UVa 103 题目大意:给定n个箱子,每个箱子有m个维度, 一个箱子可以嵌套在另一个箱子中当且仅当该箱子的所有的维度大小全部小于另一个箱子的相应维度, (注意箱子可以旋转,即箱子维度可以互换),求最 ...

  3. DAG上的动态规划之嵌套矩形

    题意描述:有n个矩形,每个矩形可以用两个整数a.b描述,表示它的长和宽, 矩形(a,b)可以嵌套在矩形(c,d)当且仅当a<c且b<d, 要求选出尽量多的矩形排成一排,使得除了最后一个外, ...

  4. 9.2 DAG上的动态规划

    在有向无环图上的动态规划是学习动态规划的基础,很多问题都可以转化为DAG上的最长路,最短路或路径计数问题 9.2.1 DAG模型 嵌套矩形问题: 矩形之间的可嵌套关系是一种典型的二元关系,二元关系可以 ...

  5. DAG 上的动态规划(训练指南—大白书)

    有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.矩形嵌套 题目描述:       ...

  6. DP入门(2)——DAG上的动态规划

    有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.DAG模型 [嵌套矩形问题] 问题 ...

  7. 嵌套矩形——DAG上的动态规划

    有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.非常多问题都能够转化为DAG上的最长路.最短路或路径计数问题. 题目描写叙述: 有n个矩形,每一个矩 ...

  8. DAG上的动态规划---嵌套矩形(模板题)

    一.DAG的介绍 Directed Acyclic Graph,简称DAG,即有向无环图,有向说明有方向,无环表示不能直接或间接的指向自己. 摘录:有向无环图的动态规划是学习动态规划的基础,很多问题都 ...

  9. UVA 437 The Tower of Babylon(DAG上的动态规划)

    题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...

随机推荐

  1. frame/iframe多表单切换

    应用场景: 在Web应用中经常会遇到frame/iframe表单嵌套页面的应用,WebDriver只能在一个页面上对元素识别与定位,对于frame/iframe表单内嵌页面上的元素无法直接定位.这时就 ...

  2. Laravel joinSub 子查询的写法

    $subQuery = $model::query() ->from('table1 as a') ->getQuery(); $query = $model::query() -> ...

  3. 从零开始学AB测试:基础篇

    什么是AB测试? 通俗点理解,AB测试就是比较两个东西好坏的一套方法,这种A和B的比较在我们的生活和人生中非常常见,所以不难理解.具体到AB测试这个概念,它和我们比较哪个梨更大.比较哪个美女更漂亮.比 ...

  4. SpringBoot系列(九)单,多文件上传的正确姿势

    SpringBoot系列(九)分分钟解决文件上传 往期推荐 SpringBoot系列(一)idea新建Springboot项目 SpringBoot系列(二)入门知识 springBoot系列(三)配 ...

  5. 2. node xlsx的使用

    1. 使用xlsx模块 const xlsx = require('xlsx'); //excel async exportexcel() { let arrayData = [ ['姓名', '电话 ...

  6. System类的两个静态方法currentTimeMillis 和 arraycopy

    package com.yhqtv.demo02.ThreadPool; import java.util.Arrays; public class Test { public static void ...

  7. fasttext的使用,预料格式,调用方法

    数据格式:分词后的句子+\t__label__+标签 fasttext_model.py from fasttext import FastText import numpy as np def ge ...

  8. 好用的反向代理工具NATAPP

    这里推荐一个好用的反向代理工具NATAPP NATAPP1分钟快速新手图文教程 有免费的和付费的个人建议付费的,免费还需要身份证验证,付费版最低9元/月,看个人需求! 这里给个邀请码贴在这需要的话可以 ...

  9. 数据库 MySQL 练习

    一.sql语句基础 1.顯示德國 Germany 的人口 SELECT population FROM world  WHERE name = 'Germany' 2.查詢面積為 5,000,000 ...

  10. Linux 日常操作

    Linux 日常操作 */--> Linux 日常操作 Table of Contents 1. 查看硬件信息 1.1. 服务器型号序列号 1.2. 主板型号 1.3. 查看BIOS信息 1.4 ...