题目链接:https://codeforces.com/problemset/problem/1292/C

题意

在一颗有n个节点的树上,给每个边赋值,所有的值都在\([0,n-2]\)内并且不重复,也就是一条边一个权值,令\(mex(u,v)\)表示从\(u到v\)这条简单路径上没有出现过的最小自然数,要求使所有路径的\(mex\)之和最大。

分析

最开始我一看这个题,统计答案的时候好像就需要\(O(N^2)\),那这个题好像统计个答案就可能会T?当我看见时限是\(3s\)的时候我就知道我想多了,分析时间复杂度的时候提前看一下时限,防止因看错时限分析错时间复杂度。

首先这个边的权值肯定有规律,不然枚举权值时间复杂度会很高,最开始我想的是从每个边开始\(dfs\)一下把经过次数最多的边设成0,然后依次类推,每次\(dfs\)不访问重复经过的点,发现存在一个什么问题呢,就是从不同的点开始\(dfs\)造成的结果不一样,所以这样不可行,不妨先画一条链来看看。



如果已经放好了\(0~x-1\),考虑\(x\)放哪个位置,如果我把\(x\)放到\(5-v\)上,那么\(mex(u,5)\)就会是\(x\),然后只有\(mex(u,v)\)会等于\(x+1\),但要是把\(x\)放到\(u-1\)或\(4-5\)上,\(mex\)等于\(x+1\)的就不会只是\(mex(u,v)\)了。链上是这样,树上当然也是,所以\(x\)放到链的两端会使结果更优。



也就是这样,对于\(u-v\)的路径,4和5放在最两端时结果会更优,然后对最大值5的位置进行分类讨论,就可以求解出答案。

还有一个问题,如果我真的去把每个\(mex\)相加,的确很不现实,根据之前做过的一些类似的题,直接加上\(x\)相当于在\(0~x-1\)各加1,转化成对答案的贡献,也就是\(size_u*size_v\),这样求解起来就会相对简单。

之前已经讲过,从不同的点开始\(dfs\)的结果是不同的,所以不能像平常那样统计\(size\),而是应该在加一维表示根,这样才能保证得到我们想要的\(size\),因为要枚举最大权值所在的地方,所以还要记录每个节点的父亲,同样也要记录根。

不妨用\(dp_{u,v}\)表示把\(0~x-1\)放到\(u-v\)的最大答案,\(s_{u,v}\)表示\(v\)以\(u\)为根时的子树大小,\(fa_{u,v}\)表示\(v\)以\(u\)为根时的父亲。于是有

\[dp_{u,v}=max(dp_{fa_{u,v},u},dp_{fa_{v,u},v})+s_{u,v}*s_{v,u}
然后此题就能得解,注意开long long
```
#include<iostream>
#define ll long long
using namespace std;
const int N=3e3+10;
struct Edge{
int to,nxt;
}e[N<<1];
int Head[N],len;
void Ins(int a,int b){
e[++len].to=b;e[len].nxt=Head[a];Head[a]=len;
}
int rt;ll s[N][N],dp[N][N],f[N][N];
void dfs(int u){
s[rt][u]=1;
for(int i=Head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f[rt][u])continue;
f[rt][v]=u;
dfs(v);
s[rt][u]+=s[rt][v];
}
}
ll calc(int u,int v){
if(u==v)return 0;
if(dp[u][v])return dp[u][v];
return (dp[u][v]=max(calc(f[u][v],u),calc(f[v][u],v))+s[u][v]*s[v][u]);
}
int main(){
int n;
cin>>n;
for(int i=1;i<n;i++){
int a,b;
cin>>a>>b;
Ins(a,b);Ins(b,a);
}
for(int i=1;i<=n;i++)rt=i,dfs(i);
ll ans=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
ans=max(ans,calc(i,j));
cout<<ans;
}
```\]

CF1292C Xenon's Attack on the Gangs的更多相关文章

  1. CF1292C Xenon's Attack on the Gangs 题解

    传送门 题目描述 输入格式 输出格式 题意翻译 给n个结点,n-1条无向边.即一棵树.我们需要给这n-1条边赋上0~ n-2不重复的值.mex(u,v)表示从结点u到结点v经过的边权值中没有出现的最小 ...

  2. Codeforces 1292C Xenon's Attack on the Gangs 题解

    题目 On another floor of the A.R.C. Markland-N, the young man Simon "Xenon" Jackson, takes a ...

  3. Xenon's Attack on the Gangs(树规)

    题干 Input Output Example Test 1: Test 2: 3 5 1 2 1 2 2 3 1 3 1 4 3 5 3 10 Tips 译成人话 给n个结点,n-1条无向边.即一棵 ...

  4. Xenon's Attack on the Gangs,题解

    题目: 题意: 有一个n个节点的树,边权为0-n-2,定义mex(a,b)表示除了ab路径上的自然数以外的最小的自然数,求如何分配边权使得所有的mex(a,b)之和最大. 分析: 看似有点乱,我们先不 ...

  5. 【树形DP】CF 1293E Xenon's Attack on the Gangs

    题目大意 vjudge链接 给n个结点,n-1条无向边.即一棵树. 我们需要给这n-1条边赋上0~ n-2不重复的值. mex(u,v)表示从结点u到结点v经过的边权值中没有出现的最小非负整数. 计算 ...

  6. Codeforces Round #614 (Div. 2) A-E简要题解

    链接:https://codeforces.com/contest/1293 A. ConneR and the A.R.C. Markland-N 题意:略 思路:上下枚举1000次扫一遍,比较一下 ...

  7. Codeforces #614 div.2 (A-E)

    A  ConneR and the A.R.C. Markland-N #include <bits/stdc++.h> using namespace std; #define ll l ...

  8. 【Cocos2d-x for WP8 学习整理】(2)Cocos2d-Html5 游戏 《Fruit Attack》 WP8移植版 开源

    这一阵花了些时间,把 cocos2d-html5 里的sample 游戏<Fruit Attack>给移植到了WP8上来,目前已经实现了基本的功能,但是还有几个已知的bug,比如WP8只支 ...

  9. Web 服务器 low bandth DOS attack

    https://www.owasp.org/images/0/04/Roberto_Suggi_Liverani_OWASPNZDAY2010-Defending_against_applicatio ...

随机推荐

  1. Nginx之负载均衡配置(一)

    前文我们聊了下nginx作为反向代理服务器,代理后端动态应用服务器的配置,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/12430543.html:今天我们来聊 ...

  2. javascript入门进阶(一)

    javascript 入门进阶 这里主要讲解一下在入门阶段很难注意的一些知识点,不一定有用.但是会了总比不会强. 1.HTML为<script>标签准备的6个属性: -async:可选.表 ...

  3. 解决挖矿病毒【Xmrig miner 】CPU 100%服务器卡死问题

    背景: 突然有一天,服务器访问很慢很慢,进程查看发现CPU是100%,而且没有任何降低的意思 收集: 打开任务管理器,进程查看中CPU排序,发现一个System的进程,第一想法以为是空闲利用,发现结束 ...

  4. MySQL中SQL Mode的查看与设置

    MySQL可以运行在不同的模式下,而且可以在不同的场景下运行不同的模式,这主要取决于系统变量 sql_mode 的值.本文主要介绍一下这个值的查看与设置,主要在Mac系统下. 对于每个模式的意义和作用 ...

  5. kubeasz部署高可用kubernetes1.17.2 并实现traefik2.1.2部署

    模板机操作 # cat /etc/redhat-release CentOS Linux release 7.6.1810 (Core) # uname -a //内核升级到4.4.X以后, 关于如何 ...

  6. (转)协议森林04 地址耗尽危机 (IPv4与IPv6地址)

    协议森林04 地址耗尽危机 (IPv4与IPv6地址) 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! IP地址是IP协议的重要组 ...

  7. 0402数据放入集合进行查询-Java(新手)

    JDBC工具类: package cn.Wuchang.zyDome; import java.sql.*; public class JDBCUtils { private static final ...

  8. File 关键词

    getParent() 获取父路径 getAbsoluteFile 获取绝对路径 length()  获得文件的字节数 getName() 获取路径中最后部分的名字 getPath() 获取整体路径. ...

  9. AAAI 2020 | DIoU和CIoU:IoU在目标检测中的正确打开方式

    论文提出了IoU-based的DIoU loss和CIoU loss,以及建议使用DIoU-NMS替换经典的NMS方法,充分地利用IoU的特性进行优化.并且方法能够简单地迁移到现有的算法中带来性能的提 ...

  10. DIV常用属性大全

    目录 一.属性列表 二.常用属性 三.一些特殊效果 四.定位和控制 一.属性列表 color : #999999 文字颜色 font-family : 宋体 文字字型 font-size : 10pt ...