题目链接:https://codeforces.com/problemset/problem/1292/C

题意

在一颗有n个节点的树上,给每个边赋值,所有的值都在\([0,n-2]\)内并且不重复,也就是一条边一个权值,令\(mex(u,v)\)表示从\(u到v\)这条简单路径上没有出现过的最小自然数,要求使所有路径的\(mex\)之和最大。

分析

最开始我一看这个题,统计答案的时候好像就需要\(O(N^2)\),那这个题好像统计个答案就可能会T?当我看见时限是\(3s\)的时候我就知道我想多了,分析时间复杂度的时候提前看一下时限,防止因看错时限分析错时间复杂度。

首先这个边的权值肯定有规律,不然枚举权值时间复杂度会很高,最开始我想的是从每个边开始\(dfs\)一下把经过次数最多的边设成0,然后依次类推,每次\(dfs\)不访问重复经过的点,发现存在一个什么问题呢,就是从不同的点开始\(dfs\)造成的结果不一样,所以这样不可行,不妨先画一条链来看看。



如果已经放好了\(0~x-1\),考虑\(x\)放哪个位置,如果我把\(x\)放到\(5-v\)上,那么\(mex(u,5)\)就会是\(x\),然后只有\(mex(u,v)\)会等于\(x+1\),但要是把\(x\)放到\(u-1\)或\(4-5\)上,\(mex\)等于\(x+1\)的就不会只是\(mex(u,v)\)了。链上是这样,树上当然也是,所以\(x\)放到链的两端会使结果更优。



也就是这样,对于\(u-v\)的路径,4和5放在最两端时结果会更优,然后对最大值5的位置进行分类讨论,就可以求解出答案。

还有一个问题,如果我真的去把每个\(mex\)相加,的确很不现实,根据之前做过的一些类似的题,直接加上\(x\)相当于在\(0~x-1\)各加1,转化成对答案的贡献,也就是\(size_u*size_v\),这样求解起来就会相对简单。

之前已经讲过,从不同的点开始\(dfs\)的结果是不同的,所以不能像平常那样统计\(size\),而是应该在加一维表示根,这样才能保证得到我们想要的\(size\),因为要枚举最大权值所在的地方,所以还要记录每个节点的父亲,同样也要记录根。

不妨用\(dp_{u,v}\)表示把\(0~x-1\)放到\(u-v\)的最大答案,\(s_{u,v}\)表示\(v\)以\(u\)为根时的子树大小,\(fa_{u,v}\)表示\(v\)以\(u\)为根时的父亲。于是有

\[dp_{u,v}=max(dp_{fa_{u,v},u},dp_{fa_{v,u},v})+s_{u,v}*s_{v,u}
然后此题就能得解,注意开long long
```
#include<iostream>
#define ll long long
using namespace std;
const int N=3e3+10;
struct Edge{
int to,nxt;
}e[N<<1];
int Head[N],len;
void Ins(int a,int b){
e[++len].to=b;e[len].nxt=Head[a];Head[a]=len;
}
int rt;ll s[N][N],dp[N][N],f[N][N];
void dfs(int u){
s[rt][u]=1;
for(int i=Head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f[rt][u])continue;
f[rt][v]=u;
dfs(v);
s[rt][u]+=s[rt][v];
}
}
ll calc(int u,int v){
if(u==v)return 0;
if(dp[u][v])return dp[u][v];
return (dp[u][v]=max(calc(f[u][v],u),calc(f[v][u],v))+s[u][v]*s[v][u]);
}
int main(){
int n;
cin>>n;
for(int i=1;i<n;i++){
int a,b;
cin>>a>>b;
Ins(a,b);Ins(b,a);
}
for(int i=1;i<=n;i++)rt=i,dfs(i);
ll ans=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
ans=max(ans,calc(i,j));
cout<<ans;
}
```\]

CF1292C Xenon's Attack on the Gangs的更多相关文章

  1. CF1292C Xenon's Attack on the Gangs 题解

    传送门 题目描述 输入格式 输出格式 题意翻译 给n个结点,n-1条无向边.即一棵树.我们需要给这n-1条边赋上0~ n-2不重复的值.mex(u,v)表示从结点u到结点v经过的边权值中没有出现的最小 ...

  2. Codeforces 1292C Xenon's Attack on the Gangs 题解

    题目 On another floor of the A.R.C. Markland-N, the young man Simon "Xenon" Jackson, takes a ...

  3. Xenon's Attack on the Gangs(树规)

    题干 Input Output Example Test 1: Test 2: 3 5 1 2 1 2 2 3 1 3 1 4 3 5 3 10 Tips 译成人话 给n个结点,n-1条无向边.即一棵 ...

  4. Xenon's Attack on the Gangs,题解

    题目: 题意: 有一个n个节点的树,边权为0-n-2,定义mex(a,b)表示除了ab路径上的自然数以外的最小的自然数,求如何分配边权使得所有的mex(a,b)之和最大. 分析: 看似有点乱,我们先不 ...

  5. 【树形DP】CF 1293E Xenon's Attack on the Gangs

    题目大意 vjudge链接 给n个结点,n-1条无向边.即一棵树. 我们需要给这n-1条边赋上0~ n-2不重复的值. mex(u,v)表示从结点u到结点v经过的边权值中没有出现的最小非负整数. 计算 ...

  6. Codeforces Round #614 (Div. 2) A-E简要题解

    链接:https://codeforces.com/contest/1293 A. ConneR and the A.R.C. Markland-N 题意:略 思路:上下枚举1000次扫一遍,比较一下 ...

  7. Codeforces #614 div.2 (A-E)

    A  ConneR and the A.R.C. Markland-N #include <bits/stdc++.h> using namespace std; #define ll l ...

  8. 【Cocos2d-x for WP8 学习整理】(2)Cocos2d-Html5 游戏 《Fruit Attack》 WP8移植版 开源

    这一阵花了些时间,把 cocos2d-html5 里的sample 游戏<Fruit Attack>给移植到了WP8上来,目前已经实现了基本的功能,但是还有几个已知的bug,比如WP8只支 ...

  9. Web 服务器 low bandth DOS attack

    https://www.owasp.org/images/0/04/Roberto_Suggi_Liverani_OWASPNZDAY2010-Defending_against_applicatio ...

随机推荐

  1. .Net Core 依赖注入手记

    .Net Core自身提供了一套简单的DI框架,能满足我们DI基本的需求.它依赖以下组件,需要从Nuget包下拉取. Microsoft.Extensions.DependencyInjection. ...

  2. django setting文件那些事

    1.设置语言.时区 2.设置新建的用户表作为默认用户表 3.利用apps文件夹收纳app 新建python package apps,然后把app放在该文件夹下 然后setting中添加如下代码: 4 ...

  3. 编译putty 源码去掉 Are you sure you want to close this session? 提示

    0, 为什么要编译 putty ?在关闭窗口的时候,会弹出一个 Are you sure you want to close this session?要把这个去掉.当然也可以用 OD 之类的来修改. ...

  4. AX2012 form displays unusually because of native resolution issues(由于本机高分辨率问题导致AX2012界面显示异常)

    Please tick the 'Disable display scaling on high DPI settings' and re-logiin AX,it will be OK. 当你遇到本 ...

  5. C语言程序设计(十三) 文件操作

    第十三章 文件操作 文本文件:将数值型数据的每一位数字作为一个字符以其ASCII码的形式存储(每一位数字都单独占用一个字节的存储空间) 二进制文件:数据值是以二进制形式存储的 文本文件可以方便地被其他 ...

  6. Python操作系统

    一 为什么要有操作系统 (两本书:现代操作系统.操作系统原理,学好python以后再去研究吧~~) 现代的计算机系统主要是由一个或者多个处理器,主存,硬盘,键盘,鼠标,显示器,打印机,网络接口及其他输 ...

  7. C++ 动态链接库 dll的加载

    //首先生成一个my.dll项目,在cpp中添加如下代码 //导出函数 _declspec(dllexport) int test(int a, int b) { return a + b; } // ...

  8. iview Checkbox 多选框 v-model 赋值方法 this.innerValueArr = [this.previousValue]

    iview Checkbox 多选框 v-model 赋值方法 this.innerValueArr = [this.previousValue]

  9. 量化学习 | Tushare 基本面选股 (二)

    量化投资比较重要的是策略,可是你得先选个好股,价值投资需要认同他的价值,值得投资的股票才有投资的机会,现在简单介绍一下基于基本面的选股,其实我现实生活中也有炒股,都是经验之说的选股原则. 首先从tus ...

  10. Axure rp8 注册码,亲测可以用! 可用给个赞呗!!

    License:zdfans Key:fZw2VoYzXakllUuLVdTH13QYWnjD6NZrxgubQkaRyxD5+HNMqdr+WZKkaa6IoE5N