题目链接:https://codeforces.com/problemset/problem/1292/C

题意

在一颗有n个节点的树上,给每个边赋值,所有的值都在\([0,n-2]\)内并且不重复,也就是一条边一个权值,令\(mex(u,v)\)表示从\(u到v\)这条简单路径上没有出现过的最小自然数,要求使所有路径的\(mex\)之和最大。

分析

最开始我一看这个题,统计答案的时候好像就需要\(O(N^2)\),那这个题好像统计个答案就可能会T?当我看见时限是\(3s\)的时候我就知道我想多了,分析时间复杂度的时候提前看一下时限,防止因看错时限分析错时间复杂度。

首先这个边的权值肯定有规律,不然枚举权值时间复杂度会很高,最开始我想的是从每个边开始\(dfs\)一下把经过次数最多的边设成0,然后依次类推,每次\(dfs\)不访问重复经过的点,发现存在一个什么问题呢,就是从不同的点开始\(dfs\)造成的结果不一样,所以这样不可行,不妨先画一条链来看看。



如果已经放好了\(0~x-1\),考虑\(x\)放哪个位置,如果我把\(x\)放到\(5-v\)上,那么\(mex(u,5)\)就会是\(x\),然后只有\(mex(u,v)\)会等于\(x+1\),但要是把\(x\)放到\(u-1\)或\(4-5\)上,\(mex\)等于\(x+1\)的就不会只是\(mex(u,v)\)了。链上是这样,树上当然也是,所以\(x\)放到链的两端会使结果更优。



也就是这样,对于\(u-v\)的路径,4和5放在最两端时结果会更优,然后对最大值5的位置进行分类讨论,就可以求解出答案。

还有一个问题,如果我真的去把每个\(mex\)相加,的确很不现实,根据之前做过的一些类似的题,直接加上\(x\)相当于在\(0~x-1\)各加1,转化成对答案的贡献,也就是\(size_u*size_v\),这样求解起来就会相对简单。

之前已经讲过,从不同的点开始\(dfs\)的结果是不同的,所以不能像平常那样统计\(size\),而是应该在加一维表示根,这样才能保证得到我们想要的\(size\),因为要枚举最大权值所在的地方,所以还要记录每个节点的父亲,同样也要记录根。

不妨用\(dp_{u,v}\)表示把\(0~x-1\)放到\(u-v\)的最大答案,\(s_{u,v}\)表示\(v\)以\(u\)为根时的子树大小,\(fa_{u,v}\)表示\(v\)以\(u\)为根时的父亲。于是有

\[dp_{u,v}=max(dp_{fa_{u,v},u},dp_{fa_{v,u},v})+s_{u,v}*s_{v,u}
然后此题就能得解,注意开long long
```
#include<iostream>
#define ll long long
using namespace std;
const int N=3e3+10;
struct Edge{
int to,nxt;
}e[N<<1];
int Head[N],len;
void Ins(int a,int b){
e[++len].to=b;e[len].nxt=Head[a];Head[a]=len;
}
int rt;ll s[N][N],dp[N][N],f[N][N];
void dfs(int u){
s[rt][u]=1;
for(int i=Head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f[rt][u])continue;
f[rt][v]=u;
dfs(v);
s[rt][u]+=s[rt][v];
}
}
ll calc(int u,int v){
if(u==v)return 0;
if(dp[u][v])return dp[u][v];
return (dp[u][v]=max(calc(f[u][v],u),calc(f[v][u],v))+s[u][v]*s[v][u]);
}
int main(){
int n;
cin>>n;
for(int i=1;i<n;i++){
int a,b;
cin>>a>>b;
Ins(a,b);Ins(b,a);
}
for(int i=1;i<=n;i++)rt=i,dfs(i);
ll ans=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
ans=max(ans,calc(i,j));
cout<<ans;
}
```\]

CF1292C Xenon's Attack on the Gangs的更多相关文章

  1. CF1292C Xenon's Attack on the Gangs 题解

    传送门 题目描述 输入格式 输出格式 题意翻译 给n个结点,n-1条无向边.即一棵树.我们需要给这n-1条边赋上0~ n-2不重复的值.mex(u,v)表示从结点u到结点v经过的边权值中没有出现的最小 ...

  2. Codeforces 1292C Xenon's Attack on the Gangs 题解

    题目 On another floor of the A.R.C. Markland-N, the young man Simon "Xenon" Jackson, takes a ...

  3. Xenon's Attack on the Gangs(树规)

    题干 Input Output Example Test 1: Test 2: 3 5 1 2 1 2 2 3 1 3 1 4 3 5 3 10 Tips 译成人话 给n个结点,n-1条无向边.即一棵 ...

  4. Xenon's Attack on the Gangs,题解

    题目: 题意: 有一个n个节点的树,边权为0-n-2,定义mex(a,b)表示除了ab路径上的自然数以外的最小的自然数,求如何分配边权使得所有的mex(a,b)之和最大. 分析: 看似有点乱,我们先不 ...

  5. 【树形DP】CF 1293E Xenon's Attack on the Gangs

    题目大意 vjudge链接 给n个结点,n-1条无向边.即一棵树. 我们需要给这n-1条边赋上0~ n-2不重复的值. mex(u,v)表示从结点u到结点v经过的边权值中没有出现的最小非负整数. 计算 ...

  6. Codeforces Round #614 (Div. 2) A-E简要题解

    链接:https://codeforces.com/contest/1293 A. ConneR and the A.R.C. Markland-N 题意:略 思路:上下枚举1000次扫一遍,比较一下 ...

  7. Codeforces #614 div.2 (A-E)

    A  ConneR and the A.R.C. Markland-N #include <bits/stdc++.h> using namespace std; #define ll l ...

  8. 【Cocos2d-x for WP8 学习整理】(2)Cocos2d-Html5 游戏 《Fruit Attack》 WP8移植版 开源

    这一阵花了些时间,把 cocos2d-html5 里的sample 游戏<Fruit Attack>给移植到了WP8上来,目前已经实现了基本的功能,但是还有几个已知的bug,比如WP8只支 ...

  9. Web 服务器 low bandth DOS attack

    https://www.owasp.org/images/0/04/Roberto_Suggi_Liverani_OWASPNZDAY2010-Defending_against_applicatio ...

随机推荐

  1. asp.net mvc core 管道以及拦截器初了解

    今天来看一下asp.net core的执行管道.先看下官方说明: 从上图可以抛光,asp.net core的执行顺序是,当收到一个请求后,request请求会先经过已注册的中间件,然后会进入到mvc的 ...

  2. Androidstudio实现一个简易的加法器——分享两种方法实现(日常作业练习)

    Androidstudio实现一个简易的加法器——分享两种方法实现(日常作业练习)                                                           ...

  3. Hadoop集群搭建(五)~搭建集群

    继上篇关闭防火墙之后,因为后面我们会管理一个集群,在VMware中不断切换不同节点,为了管理方便我选择xshell这个连接工具,大家也可以选择SecureCRT等工具. 本篇记录一下3台机器集群的搭建 ...

  4. javaScript 基础知识汇总 (十五)

    1.模块简介 什么是模块: 模块就是一个文件,一个脚本,通过关键字export 和 import 交换模块之间的功能. export 关键字表示在当前模块之外可以访问的变量和功能. import 关键 ...

  5. 数据库事务ACID详解(转载)

    转载自:http://blog.csdn.net/shuaihj/article/details/14163713 谈谈数据库的ACID 一.事务 定义:所谓事务,它是一个操作序列,这些操作要么都执行 ...

  6. Leetcode_面试题 17.24. 最大子矩阵

    最大子矩阵问题,n是200,枚举上下行,O(N)求一下最大子段和. code class Solution { public: vector<int> getMaxMatrix(vecto ...

  7. VScode配置CMD本地运行环境(2.0)

    VScode配置CMD本地运行环境(2.0) 官方Task.json说明 完整的Task.json配置信息 Task.json预定义变量 看了很多网上的教程都说需要下载VScode的python插件, ...

  8. 趣学Spring:一文搞懂Aware、异步编程、计划任务

    你好呀,我是沉默王二,一个和黄家驹一样身高,刘德华一样颜值的程序员(不信围观朋友圈呗).从 2 位偶像的年纪上,你就可以断定我的码龄至少在 10 年以上,但实话实说,我一直坚信自己只有 18 岁,因为 ...

  9. SQL数据库-基本操作

    SQL教程 整理自:廖雪峰的官方网站-SQL教程 目录 SQL教程 SQL快捷键 1.概述 数据类型 SQL操作数据库的能力 语法特点 2. 安装MySQL 运行MySQL 3. 关系模型 3.1 概 ...

  10. 洛谷1363 幻象迷宫dfs

    题目网址:https://www.luogu.com.cn/problem/P1363 迷宫是无限多块地图拼接而成的,问是否可以在迷宫中走无限远.解决方案是dfs,走出初始地图之后的位置映射到原位置( ...