bzoj 3622 已经没有什么好害怕的了——二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3622
令 f[i] 表示钦定 i 对 a[ ]>b[ ] 的关系的方案数;g[i] 表示恰好 i 对 a[ ]>b[ ] 的关系的方案数。
那么 \(f[i]=\sum\limits_{j>=i}C_{j}^{i}*g[j] \) ,\(g[i]=\sum\limits_{j>=i}C_{j}^{i}f[j](-1)^{j-i} \)
考虑怎么求 f[ ] 。可以 DP 。
先把 a[ ] 和 b[ ] 都按从小到大的顺序排序,dp[i][j]表示前 i 个 a[ ] 匹配了 j 对 a[ ] > b[ ] 的关系的方案数。
排序的好处就是 a[ ] > b[ ] 的一段 b[ ] ,a[i] 的这一段能包含 a[i-1] 的这一段。所以转移就是 dp[i][j]=dp[i-1][j]+dp[i-1][j-1]*(p0-(j-1)),其中p0是比 a[i] 小的 b[ ] 的个数。
然后别忘了 f[ i ] = dp[n][i]*(n-i)! ,阶乘表示其他配对可以随意。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
int Mn(int a,int b){return a<b?a:b;}
const int N=,mod=1e9+;
int upt(int x){if(x>=mod)x-=mod;return x;}
int n,k,a[N],b[N],dp[N],c[N][N];
void init()
{
for(int i=;i<=n;i++)c[i][]=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
c[i][j]=upt(c[i-][j]+c[i-][j-]);
}
int main()
{
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=;i<=n;i++)scanf("%d",&b[i]);
k+=n;if(k&){puts("");return ;}//
k>>=;
sort(a+,a+n+); sort(b+,b+n+);
int p0=;dp[]=;
for(int i=;i<=n;i++)
{
while(p0<n&&b[p0+]<a[i])p0++;
for(int j=Mn(i,p0);j;j--)
dp[j]=(dp[j]+(ll)dp[j-]*(p0-j+))%mod;
}
for(int i=n,lj=,j=;i;i--,j++,lj=(ll)lj*j%mod)
dp[i]=(ll)dp[i]*lj%mod;
int ans=; init();
for(int i=k,j=;i<=n;i++,j=-j)
ans=(ans+(ll)dp[i]*j*c[i][k])%mod;
if(ans<)ans+=mod; printf("%d\n",ans);
return ;
}
bzoj 3622 已经没有什么好害怕的了——二项式反演的更多相关文章
- BZOJ 3622: 已经没有什么好害怕的了(二项式反演)
传送门 解题思路 首先将\(a\),\(b\)排序,然后可以算出\(t(i)\),表示\(a(i)\)比多少个\(b(i)\)大,根据容斥套路,设\(f(k)\)表示恰好有\(k\)个\(a(i)\) ...
- luoguP4859 已经没有什么好害怕的了(二项式反演)
luoguP4859 已经没有什么好害怕的了(二项式反演) 祭奠天国的bzoj. luogu 题解时间 先特判 $ n - k $ 为奇数无解. 为了方便下记 $ m = ( n + k ) / 2 ...
- BZOJ 3622: 已经没有什么好害怕的了 [容斥原理 DP]
3622: 已经没有什么好害怕的了 题意:和我签订契约,成为魔法少女吧 真·题意:零食魔女夏洛特的结界里有糖果a和药片b各n个,两两配对,a>b的配对比b>a的配对多k个学姐就可能获胜,求 ...
- bzoj 3622 已经没有什么好害怕的了 类似容斥,dp
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1213 Solved: 576[Submit][Status][ ...
- BZOJ 3622 : 已经没有什么好害怕的了(dp + 广义容斥原理)
今天没听懂 h10 的讲课 但已经没有什么好害怕的了 题意 给你两个序列 \(a,b\) 每个序列共 \(n\) 个数 , 数之间两两不同 问 \(a\) 与 \(b\) 之间有多少配对方案 使得 \ ...
- BZOJ3622 已经没有什么好害怕的了 二项式反演+DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3622 题解 首先显然如果 \(n - k\) 为奇数那么就是无解.否则的话,"糖果& ...
- [BZOJ 3622]已经没有什么好害怕的了
世萌萌王都拿到了,已经没有什么好害怕的了—— (作死) 笑看哪里都有学姐,真是不知说什么好喵~ 话说此题是不是输 0 能骗不少分啊,不然若学姐赢了,那么有头的学姐还能叫学姐吗? (作大死) 这 ...
- ●BZOJ 3622 已经没有什么好害怕的了
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3622 题解: 容斥,dp1).可以求出需要多少对"糖果>药片"(K ...
- 解题:BZOJ 3622 已经没有什么好害怕的了·
题面 用来学习二项式反演的题目 大于等于/小于等于 反演出 恰好等于 设前者为f(n),后者为g(n),则有$f(n)=\sum\limits_{i=0}^nC_n^ig(n)<->g(n ...
随机推荐
- U盘安装Ubuntu三步走
需要工具: U盘.Ubuntu的ISO镜像.universal usb installer 1.下载Ubuntu (1) (2)我这里下载14.04版本 (3)我这里下载64位系统 下载后得到的是个t ...
- 队(queue),C++模板实现
body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...
- ansible 循环register
在有循环的task中使用register,register保存的是一个列表,整个属性为results results 是一个单个循环返回的结果的列表 - debug: msg="{{ ite ...
- sqlserver 2008评估期已过
sqlserver 评估期已过 分类: SQL SERVER2012-08-22 17:04 977人阅读 评论(0) 收藏 举报 打开sqlserver出现提示:评估期已过.有关如何升级的测试版软件 ...
- node 常见的一些系统问题
nodde正风生火起,很多介绍却停留在入门阶段,无法投入生产 许多文章在讲第三方类库,可是这些库质量差距较大,一旦遇到问题怎么办 全面了解node核心才能成为一名合格的node开发人员 1. node ...
- ubuntu 安装最新的python3.7.0
原文:https://www.cnblogs.com/ningvsban/p/4384995.html 1. 安装pyenv git clone git://github.com/yyuu/pyenv ...
- Linux/Mac OS 个人常用Terminal技巧整理
刚开始接触linux有些不适应,走了不少弯路,一直没有系统的学过linux应用,基本都是零零散散Google出来的知识,在这里做个整理: Vi/Vim 基本操作: 刚开始接触linux时,不懂vi吃了 ...
- centos 7 NAT模式网络设置
打开虚拟机.菜单栏点击‘编辑’ -> ‘虚拟网络设置’. 注意下图红色框地方的设置: 然后进入linux系统,编辑网络配置: vi /etc/sysconfig/network-scripts/ ...
- 一个两年Java的面试总结
前言 16年毕业到现在也近两年了,最近面试了阿里集团(菜鸟网络,蚂蚁金服),网易,滴滴,点我达,最终收到点我达,网易offer,蚂蚁金服二面挂掉,菜鸟网络一个月了还在流程中...最终有幸去了网易.但是 ...
- Samsung_tiny4412(驱动笔记09)----alloc_pages,kmalloc,vmalloc,kmem_cache,class
/*********************************************************************************** * * alloc_pages ...