机器学习-数据可视化神器matplotlib学习之路(一)
直接上代码吧,说明写在备注就好了,这次主要学习一下基本的画图方法和常用的图例图标等
from matplotlib import pyplot as plt
import numpy as np #这里是最最基本的代码了
#x轴-2到2均分50个点
x = np.linspace(-2, 2, 50)
y = x**2
plt.plot(x, y)
plt.show()
下面要加一下元素和样式了
from matplotlib import pyplot as plt
import numpy as np x = np.linspace(-2, 2, 50)
y = x**2
plt.xlim((-3,3))#设置x坐标范围
plt.ylim((0,5))#设置y坐标范围
plt.plot(x, y,
linestyle='--',#线条的样式
linewidth=2.0,#线条宽度
alpha=0.5,#透明度,数字越小越透明,范围(0-1)
marker='.',#每个点的样式
color='r',#颜色
label='y=x**2'#图例
)
#打开图例,不然plt.plot里面的label属性会无效
plt.legend(
loc='upper right'#指定图例位置,这里是右上,默认为best会自动选择最优的位置
)
plt.show()
到这里,如果我们想要x轴刻度自由控制一下可以用 plt.xticks 来实现
from matplotlib import pyplot as plt
import numpy as np x = np.linspace(-2, 2, 50)
y = x**2
plt.xlim((-3,3))#设置x坐标范围
plt.ylim((0,5))#设置y坐标范围
plt.plot(x, y,
linestyle='--',#线条的样式
linewidth=2.0,#线条宽度
alpha=0.5,#透明度,数字越小越透明,范围(0-1)
marker='.',#每个点的样式
color='r',#颜色
label='y=x**2'#图例
)
#打开图例,不然plt.plot里面的label属性会无效
plt.legend(
loc='upper right'#指定图例位置,这里是右上,默认为best会自动选择最优的位置
) new_xticks = np.linspace(-2, 2, 6)
plt.xticks(new_xticks)#在-2到2之间平均显示6个刻度 plt.show()
这里x轴刻度就和之前发生一点变化,有时候不需要用具体数字而是一个文字标签显示,比如y轴0以上的为normal,2以上为good,4以上为very good,
可以用 plt.yticks([0, 2, 4], [‘normal’,'good','very good']) 来实现,接下来就来实现一下
from matplotlib import pyplot as plt
import numpy as np x = np.linspace(-2, 2, 50)
y = x**2
plt.xlim((-3,3))#设置x坐标范围
plt.ylim((0,5))#设置y坐标范围
plt.plot(x, y,
linestyle='--',#线条的样式
linewidth=2.0,#线条宽度
alpha=0.5,#透明度,数字越小越透明,范围(0-1)
marker='.',#每个点的样式
color='r',#颜色
label='y=x**2'#图例
)
#打开图例,不然plt.plot里面的label属性会无效
plt.legend(
loc='upper right'#指定图例位置,这里是右上,默认为best会自动选择最优的位置
) new_xticks = np.linspace(-2, 2, 6)
plt.xticks(new_xticks)#在-2到2之间平均显示6个刻度 plt.yticks([0, 2, 4], [r'$normal$', r'$good$', r'$very\ good$'])#前后对应上就好了,$包住的是调整默认字体 plt.show()
接下来就是对坐标轴的处理了,我们想要移动坐标,用方框的左边和下班做y轴和x轴,右边和上班把颜色去掉,然后移动一下x和y轴
from matplotlib import pyplot as plt
import numpy as np x = np.linspace(-2, 2, 50)
y = x**2
plt.xlim((-3,3))#设置x坐标范围
plt.ylim((0,5))#设置y坐标范围
plt.plot(x, y,
linestyle='--',#线条的样式
linewidth=2.0,#线条宽度
alpha=0.5,#透明度,数字越小越透明,范围(0-1)
marker='.',#每个点的样式
color='r',#颜色
label='y=x**2'#图例
)
#打开图例,不然plt.plot里面的label属性会无效
plt.legend(
loc='upper right'#指定图例位置,这里是右上,默认为best会自动选择最优的位置
) new_xticks = np.linspace(-2, 2, 6)
plt.xticks(new_xticks)#在-2到2之间平均显示6个刻度 plt.yticks([0, 2, 4], [r'$normal$', r'$good$', r'$very\ good$'])#前后对应上就好了,$包住的是调整默认字体 gca = plt.gca()
gca.spines['right'].set_color('none')#将图像方框右边颜色取消
gca.spines['top'].set_color('none')#将图像方框上边颜色取消
gca.xaxis.set_ticks_position('bottom')#x轴设为方框下边
gca.yaxis.set_ticks_position('left')#y轴设为方框左边
gca.spines['bottom'].set_position(('data', 1))#将方框下边也就是x轴移动到y=1的位置
gca.spines['left'].set_position(('data', 0))#将方框左边也就是y轴移动到x=0的位置 plt.show()
这里的方法稍微有点麻烦,折腾了一下终于大功告成了!今天就到这儿,下次准备学习一下更怎样在图中用文字和其它说明
机器学习-数据可视化神器matplotlib学习之路(一)的更多相关文章
- 机器学习-数据可视化神器matplotlib学习之路(五)
这次准备做一下pandas在画图中的应用,要做数据分析的话这个更为实用,本次要用到的数据是pthon机器学习库sklearn中一组叫iris花的数据,里面组要有4个特征,分别是萼片长度.萼片宽度.花瓣 ...
- 机器学习-数据可视化神器matplotlib学习之路(三)
之前学习了一些通用的画图方法和技巧,这次就学一下其它各种不同类型的图.好了先从散点图开始,上代码: from matplotlib import pyplot as plt import numpy ...
- 机器学习-数据可视化神器matplotlib学习之路(二)
之前学习了matplotlib的一些基本画图方法(查看上一节),这次主要是学习在图中加一些文字和其其它有趣的东西. 先来个最简单的图 from matplotlib import pyplot as ...
- 机器学习-数据可视化神器matplotlib学习之路(四)
今天画一下3D图像,首先的另外引用一个包 from mpl_toolkits.mplot3d import Axes3D,接下来画一个球体,首先来看看球体的参数方程吧 (0≤θ≤2π,0≤φ≤π) 然 ...
- Python数据可视化——使用Matplotlib创建散点图
Python数据可视化——使用Matplotlib创建散点图 2017-12-27 作者:淡水化合物 Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D ...
- 学机器学习,不会数据分析怎么行——数据可视化分析(matplotlib)
前言 前面两篇文章介绍了 python 中两大模块 pandas 和 numpy 的一些基本使用方法,然而,仅仅会处理数据还是不够的,我们需要学会怎么分析,毫无疑问,利用图表对数据进行分析是最容易的, ...
- python 数据可视化(matplotlib)
matpotlib 官网 :https://matplotlib.org/index.html matplotlib 可视化示例:https://matplotlib.org/gallery/inde ...
- 绘图和数据可视化工具包——matplotlib
一.Matplotlib介绍 Matplotlib是一个强大的Python**绘图**和**数据可视化**的工具包. # 安装方法 pip install matplotlib # 引用方法 impo ...
- Python数据可视化库-Matplotlib(一)
今天我们来学习一下python的数据可视化库,Matplotlib,是一个Python的2D绘图库 通过这个库,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率图,条形图,错误图,散点图等等 废 ...
随机推荐
- loadrunner怎么打印接口返回的参数
//首先使用web_reg_save_param方法保存服务器返回的参数,如下: web_reg_save_param ("S_respond","LB=",& ...
- 怎么把<li>标签里的内容付给文本框
如果你不想使用jq,那就可以这样先写一个js函数,function val(a){alert(a);} 然后在li标签上添加点击事件,调用这个函数并将当前li里的文本当做参数一起发送给js函数< ...
- OVS中的key解析
OVS在处理每条流的时候,先根据每条流生产相应的key,然后根据key匹配相应的流表,根据流表中的action操作来处理每条流,本文对key的结构体进行分析,看看对于一条流会提出那些特征信息.对于ke ...
- Hive 体系结构介绍
下面是Hive的架构图. 图1.1 Hive体系结构 Hive的体系结构可以分为以下几部分: (1)用户接口主要有三个:CLI,Client 和 WUI.其中最常用的是CLI,Cli启动的时候,会同时 ...
- Linux基础命令---cpio
cpio 从归档中复制文件,或者复制文件到归档中.此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora. Cpio命令有三种工作模式: 1)c ...
- python3.4学习笔记(十六) windows下面安装easy_install和pip教程
python3.4学习笔记(十六) windows下面安装easy_install和pip教程 easy_install和pip都是用来下载安装Python一个公共资源库PyPI的相关资源包的 首先安 ...
- 什么是公网IP、内网IP和NAT转换?
搞网络通信应用开发的程序员,可能会经常听到外网IP(即互联网IP地址)和内网IP(即局域网IP地址),但他们的区别是什么? 1.引言 搞网络通信应用开发的程序员,可能会经常听到外网IP(即互联网IP地 ...
- P2322 [HNOI2006]最短母串问题
P2322 [HNOI2006]最短母串问题 AC自动机+bfs 题目要求:在AC自动机建的Trie图上找到一条最短链,包含所有带结尾标记的点 因为n<12,所以我们可以用二进制保存状态:某个带 ...
- 轻量级文本标记语言-Markdown
Markdown简介 接触过github的都知道,在发布项目的时候可以建立一个说明文件README.md,这个md文件就是Markdown文本编辑语言的文件. Markdown 是一种轻量级标记语言, ...
- xargs 原理&使用
1. 简介 之所以能用到这个命令,是由于很多 linux 命令不支持用管道传递参数,例如 find /sbin -perm +700 | ls -l 这个命令是错误的 find /sbin -perm ...