N-Queens I II(n皇后问题)(转)
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."], ["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
算法1
这种棋盘类的题目一般是回溯法, 依次放置每行的皇后。在放置的时候,要保持当前的状态为合法,即当前放置位置的同一行、同一列、两条对角线上都不存在皇后。
class Solution {
private:
vector<vector<string> > res;
public:
vector<vector<string> > solveNQueens(int n) {
vector<string>cur(n, string(n,'.'));
helper(cur, );
return res;
}
void helper(vector<string> &cur, int row)
{
if(row == cur.size())
{
res.push_back(cur);
return;
}
for(int col = ; col < cur.size(); col++)
if(isValid(cur, row, col))
{
cur[row][col] = 'Q';
helper(cur, row+);
cur[row][col] = '.';
}
}
//判断在cur[row][col]位置放一个皇后,是否是合法的状态
//已经保证了每行一个皇后,只需要判断列是否合法以及对角线是否合法。
bool isValid(vector<string> &cur, int row, int col)
{
//列
for(int i = ; i < row; i++)
if(cur[i][col] == 'Q')return false;
//右对角线(只需要判断对角线上半部分,因为后面的行还没有开始放置)
for(int i = row-, j=col-; i >= && j >= ; i--,j--)
if(cur[i][j] == 'Q')return false;
//左对角线(只需要判断对角线上半部分,因为后面的行还没有开始放置)
for(int i = row-, j=col+; i >= && j < cur.size(); i--,j++)
if(cur[i][j] == 'Q')return false;
return true;
}
};
算法2
上述判断状态是否合法的函数还是略复杂,其实只需要用一个一位数组来存放当前皇后的状态。假设数组为int state[n], state[i]表示第 i 行皇后所在的列。那么在新的一行 k 放置一个皇后后:
- 判断列是否冲突,只需要看state数组中state[0…k-1] 是否有和state[k]相等;
- 判断对角线是否冲突:如果两个皇后在同一对角线,那么|row1-row2| = |column1 - column2|,(row1,column1),(row2,column2)分别为冲突的两个皇后的位置
class Solution {
private:
vector<vector<string> > res;
public:
vector<vector<string> > solveNQueens(int n) {
vector<int> state(n, -);
helper(state, );
return res;
}
void helper(vector<int> &state, int row)
{//放置第row行的皇后
int n = state.size();
if(row == n)
{
vector<string>tmpres(n, string(n,'.'));
for(int i = ; i < n; i++)
tmpres[i][state[i]] = 'Q';
res.push_back(tmpres);
return;
}
for(int col = ; col < n; col++)
if(isValid(state, row, col))
{
state[row] = col;
helper(state, row+);
state[row] = -;;
}
} //判断在row行col列位置放一个皇后,是否是合法的状态
//已经保证了每行一个皇后,只需要判断列是否合法以及对角线是否合法。
bool isValid(vector<int> &state, int row, int col)
{
for(int i = ; i < row; i++)//只需要判断row前面的行,因为后面的行还没有放置
if(state[i] == col || abs(row - i) == abs(col - state[i]))
return false;
return true;
}
};算法3:(算法2的非递归版)
class Solution {
private:
vector<vector<string> > res;
public:
vector<vector<string> > solveNQueens(int n) {
vector<int> state(n, -);
for(int row = , col; ;)
{
for(col = state[row] + ; col < n; col++)//从上一次放置的位置后面开始放置
{
if(isValid(state, row, col))
{
state[row] = col;
if(row == n-)//找到了一个解,继续试探下一列
{
vector<string>tmpres(n, string(n,'.'));
for(int i = ; i < n; i++)
tmpres[i][state[i]] = 'Q';
res.push_back(tmpres);
}
else {row++; break;}//当前状态合法,去放置下一行的皇后
}
}
if(col == n)//当前行的所有位置都尝试过,回溯到上一行
{
if(row == )break;//所有状态尝试完毕,退出
state[row] = -;//回溯前清除当前行的状态
row--;
}
}
return res;
} //判断在row行col列位置放一个皇后,是否是合法的状态
//已经保证了每行一个皇后,只需要判断列是否合法以及对角线是否合法。
bool isValid(vector<int> &state, int row, int col)
{
for(int i = ; i < row; i++)//只需要判断row前面的行,因为后面的行还没有放置
if(state[i] == col || abs(row - i) == abs(col - state[i]))
return false;
return true;
}
};算法4(解释在后面)这应该是最高效的算法了
class Solution {
private:
vector<vector<string> > res;
int upperlim;
public:
vector<vector<string> > solveNQueens(int n) {
upperlim = ( << n) - ;//低n位全部置1
vector<string> cur(n, string(n, '.'));
helper(,,,cur,);
return res;
} void helper(const int row, const int ld, const int rd, vector<string>&cur, const int index)
{
int pos, p;
if ( row != upperlim )
{
pos = upperlim & (~(row | ld | rd ));//pos中二进制为1的位,表示可以在当前行的对应列放皇后
//和upperlim与运算,主要是ld在上一层是通过左移位得到的,它的高位可能有无效的1存在,这样会清除ld高位无效的1
while ( pos )
{
p = pos & (~pos + );//获取pos最右边的1,例如pos = 010110,则p = 000010
pos = pos - p;//pos最右边的1清0
setQueen(cur, index, p, 'Q');//在当前行,p中1对应的列放置皇后
helper(row | p, (ld | p) << , (rd | p) >> , cur, index+);//设置下一行
setQueen(cur, index, p, '.');
}
}
else//找到一个解
res.push_back(cur);
} //第row行,第loc1(p)列的位置放置一个queen或者清空queen,loc1(p)表示p中二进制1的位置
void setQueen(vector<string>&cur, const int row, int p, char val)
{
int col = ;
while(!(p & ))
{
p >>= ;
col++;
}
cur[row][col] = val;
}
};这个算法主要参考博客N皇后问题的两个最高效的算法,主要看helper函数,参数row、ld、rd分别表示在列和两个对角线方向的限制条件下,当前行的哪些地方不能放置皇后。如下图

前三行放置了皇后,他们对第3行(行从0开始)的影响如下: 本文地址
(1)列限制条件下,第3行的0、2、4列(紫色线和第3行的交点)不能放皇后,因此row = 101010
(2)左对角线限制条件下,第3行的0、3列(蓝色线和第3行的交点)不能放皇后,因此ld = 100100
(3)右对角线限制条件下,第3行的3、4、5列(绿色线和第3行的交点)不能放皇后,因此rd = 000111
~(row | ld | rd) = 010000,即第三行只有第1列能放置皇后。
在3行1列这个位置放上皇后,row,ld,rd对下一行的影响为:
row的第一位置1,变为111010
ld的第一位置1,并且向左移1位(因为左对角线对行的影响是依次向左倾斜的),变为101000
rd的第一位置1,并且向右移1位(因为右对角线对行的影响是依次向右倾斜的),变为001011
第4行状态如下图

Follow up for N-Queens problem.
Now, instead outputting board configurations, return the total number of distinct solutions.

这一题就是上一题的简化版了,我们只针对上面的算法2来求解这一题
class Solution {
private:
int res;
public:
int totalNQueens(int n) {
vector<int> state(n, -);
res = ;
helper(state, );
return res;
}
void helper(vector<int> &state, int row)
{//放置第row行的皇后
int n = state.size();
if(row == n)
{
res++;
return;
}
for(int col = ; col < n; col++)
if(isValid(state, row, col))
{
state[row] = col;
helper(state, row+);
state[row] = -;;
}
} //判断在row行col列位置放一个皇后,是否是合法的状态
//已经保证了每行一个皇后,只需要判断列是否合法以及对角线是否合法。
bool isValid(vector<int> &state, int row, int col)
{
for(int i = ; i < row; i++)//只需要判断row前面的行,因为后面的行还没有放置
if(state[i] == col || abs(row - i) == abs(col - state[i]))
return false;
return true;
} };
N-Queens I II(n皇后问题)(转)的更多相关文章
- lintcode 中等题:N Queens II N皇后问题 II
题目: N皇后问题 II 根据n皇后问题,现在返回n皇后不同的解决方案的数量而不是具体的放置布局. 样例 比如n=4,存在2种解决方案 解题: 和上一题差不多,这里只是求数量,这个题目定义全局变量,递 ...
- [Leetcode] n queens ii n皇后问题
Follow up for N-Queens problem. Now, instead outputting board configurations, return the total numbe ...
- [LeetCode] N-Queens II N皇后问题之二
Follow up for N-Queens problem. Now, instead outputting board configurations, return the total numbe ...
- [leetcode]52. N-Queens II N皇后
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...
- [LeetCode] 52. N-Queens II N皇后问题之二
The n-queens puzzle is the problem of placing nqueens on an n×n chessboard such that no two queens a ...
- [LeetCode] 52. N-Queens II N皇后问题 II
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...
- 52. N-Queens II N皇后II
网址:https://leetcode.com/problems/n-queens-ii/ 方法1:按照逻辑思路,通过回溯法解决问题.速度较慢! class Solution { public: vo ...
- [CareerCup] 9.9 Eight Queens 八皇后问题
9.9 Write an algorithm to print all ways of arranging eight queens on an 8x8 chess board so that non ...
- Java实现 LeetCode 52 N皇后 II
52. N皇后 II n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回 n 皇后不同的解决方案 ...
- Java与算法之(6) - 八皇后问题
在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. (文字和图片来自百度百科) 如果动手来摆放皇后,可以用这样一种思路:在最左侧 ...
随机推荐
- 美国谍梦第一季/全集The Americans迅雷下载
美国谍梦 第一季 The Americans Season 1 (2013)本季看点:这部背景设在80年代的剧集,故事讲述了一对被组织安排在美国生活的克格勃特工夫妻Phillip和Elizabeth, ...
- Java并发编程的艺术(二)——重排序
当我们写一个单线程程序时,总以为计算机会一行行地运行代码,然而事实并非如此. 什么是重排序? 重排序指的是编译器.处理器在不改变程序执行结果的前提下,重新排列指令的执行顺序,以达到最佳的运行效率. 重 ...
- Kubernetes基础:查看状态、管理服务
目标 了解Kubernetes Pod 了解Kubernetes Node 学习如何调试部署问题 了解如何通过Service暴露应用 Kubernetes Pods 在Kubernetes中创建一个D ...
- Log Shipping搭建
1. 概述 SQL Server 使用日志传送,您可以自动将“主服务器”实例上“主数据库”内的事务日志备份发送到单独“辅助服务器”实例上的一个或多个“辅助数据库”.事务日志备份分别应用于每个辅助 ...
- 数学图形(1.49)Nephroid曲线
昨天IPhone6在国内发售了,我就顺手发布个关于肾的图形.Nephroid中文意思是肾形的.但是这种曲线它看上去却不像个肾,当你看到它时,你觉得它像什么就是什么吧. The name nephroi ...
- [转]使用互斥对象让程序只运行一次(delphi)
使用互斥对象让程序只运行一次“怎么让我的程序在运行时不能重复打开?”经常在论坛上看到有朋友问这方面的问题.本文将比较详细的说明这一问题,并给出一个较为完善的解决方案. 尽管这已经不是一个新问题了,但这 ...
- go语言之进阶篇有缓冲channel
1.有缓冲channel 示例: 有缓存会阻塞,当读取完其中数值时,又可以写入. package main import ( "fmt" "time" ) f ...
- webpack打包器简单入门
概念 webpack是一个现代javascript应用程序的模块打包器. 当webpack处理你的应用程序时,它会递归构建一个依赖图(包含了你的应用程序所需要每个模块),然后把这些模块打包到少数几个b ...
- [leetcode]Gray Code @ Python
原题地址:https://oj.leetcode.com/problems/gray-code/ 题意: The gray code is a binary numeral system where ...
- ThinkPHP3.2.3使用分页
首先要搞清楚的就是ThinkPHP3.2.3的分页类已经被移到了Think\Page.class.php,这是跟以前的版本有些不一样的,使用起来还是跟以前版本差不多,但是默认的效果不敢恭维,所以最好是 ...