cartpole游戏,车上顶着一个自由摆动的杆子,实现杆子的平衡,杆子每次倒向一端车就开始移动让杆子保持动态直立的状态,策略函数使用一个两层的简单神经网络,输入状态有4个,车位置,车速度,杆角度,杆速度,输出action为左移动或右移动,输入状态发现至少要给3个才能稳定一会儿,给2个完全学不明白,给4个能学到很稳定的policy

策略梯度实现代码,使用torch实现一个简单的神经网络

import gym
import torch
import torch.nn as nn
import torch.optim as optim
import pygame
import sys
from collections import deque
import numpy as np # 策略网络定义
class PolicyNetwork(nn.Module):
def __init__(self):
super(PolicyNetwork, self).__init__()
self.fc = nn.Sequential(
nn.Linear(4, 10), # 4个状态输入,128个隐藏单元
nn.Tanh(),
nn.Linear(10, 2), # 输出2个动作的概率
nn.Softmax(dim=-1)
) def forward(self, x):
# print(x) 车位置 车速度 杆角度 杆速度
selected_values = x[:, [0,1,2,3]] #只使用车位置和杆角度
return self.fc(selected_values) # 训练函数
def train(policy_net, optimizer, trajectories):
policy_net.zero_grad()
loss = 0
print(trajectories[0])
for trajectory in trajectories: # if trajectory["returns"] > 90:
# returns = torch.tensor(trajectory["returns"]).float()
# else:
returns = torch.tensor(trajectory["returns"]).float() - torch.tensor(trajectory["step_mean_reward"]).float()
# print(f"获得奖励{returns}")
log_probs = trajectory["log_prob"]
loss += -(log_probs * returns).sum() # 计算策略梯度损失
loss.backward()
optimizer.step()
return loss.item() # 主函数
def main():
env = gym.make('CartPole-v1')
policy_net = PolicyNetwork()
optimizer = optim.Adam(policy_net.parameters(), lr=0.01) print(env.action_space)
print(env.observation_space)
pygame.init()
screen = pygame.display.set_mode((600, 400))
clock = pygame.time.Clock() rewards_one_episode= []
for episode in range(10000): state = env.reset()
done = False
trajectories = []
state = state[0]
step = 0
torch.save(policy_net, 'policy_net_full.pth')
while not done:
state_tensor = torch.tensor(state).float().unsqueeze(0)
probs = policy_net(state_tensor)
action = torch.distributions.Categorical(probs).sample().item()
log_prob = torch.log(probs.squeeze(0)[action])
next_state, reward, done, _,_ = env.step(action) # print(episode)
trajectories.append({"state": state, "action": action, "reward": reward, "log_prob": log_prob})
state = next_state for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
sys.exit()
step +=1 # 绘制环境状态
if rewards_one_episode and rewards_one_episode[-1] >99:
screen.fill((255, 255, 255))
cart_x = int(state[0] * 100 + 300)
pygame.draw.rect(screen, (0, 0, 255), (cart_x, 300, 50, 30))
# print(state)
pygame.draw.line(screen, (255, 0, 0), (cart_x + 25, 300), (cart_x + 25 - int(50 * torch.sin(torch.tensor(state[2]))), 300 - int(50 * torch.cos(torch.tensor(state[2])))), 2)
pygame.display.flip()
clock.tick(200) print(f"第{episode}回合",f"运行{step}步后挂了")
# 为策略梯度计算累积回报
returns = 0 for traj in reversed(trajectories):
returns = traj["reward"] + 0.99 * returns
traj["returns"] = returns
if rewards_one_episode:
# print(rewards_one_episode[:10])
traj["step_mean_reward"] = np.mean(rewards_one_episode[-10:])
else:
traj["step_mean_reward"] = 0
rewards_one_episode.append(returns)
# print(rewards_one_episode[:10])
train(policy_net, optimizer, trajectories) def play(): env = gym.make('CartPole-v1')
policy_net = PolicyNetwork()
pygame.init()
screen = pygame.display.set_mode((600, 400))
clock = pygame.time.Clock() state = env.reset()
done = False
trajectories = deque()
state = state[0]
step = 0
policy_net = torch.load('policy_net_full.pth')
while not done:
state_tensor = torch.tensor(state).float().unsqueeze(0)
probs = policy_net(state_tensor)
action = torch.distributions.Categorical(probs).sample().item()
log_prob = torch.log(probs.squeeze(0)[action])
next_state, reward, done, _,_ = env.step(action) # print(episode)
trajectories.append({"state": state, "action": action, "reward": reward, "log_prob": log_prob})
state = next_state for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
sys.exit() # 绘制环境状态
screen.fill((255, 255, 255))
cart_x = int(state[0] * 100 + 300)
pygame.draw.rect(screen, (0, 0, 255), (cart_x, 300, 50, 30))
# print(state)
pygame.draw.line(screen, (255, 0, 0), (cart_x + 25, 300), (cart_x + 25 - int(50 * torch.sin(torch.tensor(state[2]))), 300 - int(50 * torch.cos(torch.tensor(state[2])))), 2)
pygame.display.flip()
clock.tick(60)
step +=1 print(f"运行{step}步后挂了") if __name__ == '__main__':
main() #训练
# play() #推理

  运行效果,训练过程不是很稳定,有时候学很多轮次也学不明白,有时侯只需要几十次就可以学明白了

策略梯度玩 cartpole 游戏,强化学习代替PID算法控制平衡杆的更多相关文章

  1. 策略梯度训练cartpole小游戏

    我原来已经安装了anaconda,在此基础上进入cmd进行pip install tensorflow和pip install gym就可以了. 在win10的pycharm做的. policy_gr ...

  2. TensorFlow利用A3C算法训练智能体玩CartPole游戏

    本教程讲解如何使用深度强化学习训练一个可以在 CartPole 游戏中获胜的模型.研究人员使用 tf.keras.OpenAI 训练了一个使用「异步优势动作评价」(Asynchronous Advan ...

  3. DRL 教程 | 如何保持运动小车上的旗杆屹立不倒?TensorFlow利用A3C算法训练智能体玩CartPole游戏

    本教程讲解如何使用深度强化学习训练一个可以在 CartPole 游戏中获胜的模型.研究人员使用 tf.keras.OpenAI 训练了一个使用「异步优势动作评价」(Asynchronous Advan ...

  4. 【强化学习】DQN 算法改进

    DQN 算法改进 (一)Dueling DQN Dueling DQN 是一种基于 DQN 的改进算法.主要突破点:利用模型结构将值函数表示成更加细致的形式,这使得模型能够拥有更好的表现.下面给出公式 ...

  5. 【算法总结】强化学习部分基础算法总结(Q-learning DQN PG AC DDPG TD3)

    总结回顾一下近期学习的RL算法,并给部分实现算法整理了流程图.贴了代码. 1. value-based 基于价值的算法 基于价值算法是通过对agent所属的environment的状态或者状态动作对进 ...

  6. 强化学习(十七) 基于模型的强化学习与Dyna算法框架

    在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Base ...

  7. 强化学习-时序差分算法(TD)和SARAS法

    1. 前言 我们前面介绍了第一个Model Free的模型蒙特卡洛算法.蒙特卡罗法在估计价值时使用了完整序列的长期回报.而且蒙特卡洛法有较大的方差,模型不是很稳定.本节我们介绍时序差分法,时序差分法不 ...

  8. 强化学习8-时序差分控制离线算法Q-Learning

    Q-Learning和Sarsa一样是基于时序差分的控制算法,那两者有什么区别呢? 这里已经必须引入新的概念 时序差分控制算法的分类:在线和离线 在线控制算法:一直使用一个策略选择动作和更新价值函数, ...

  9. 强化学习读书笔记 - 13 - 策略梯度方法(Policy Gradient Methods)

    强化学习读书笔记 - 13 - 策略梯度方法(Policy Gradient Methods) 学习笔记: Reinforcement Learning: An Introduction, Richa ...

  10. 基于Keras的OpenAI-gym强化学习的车杆/FlappyBird游戏

    强化学习 课程:Q-Learning强化学习(李宏毅).深度强化学习 强化学习是一种允许你创造能从环境中交互学习的AI Agent的机器学习算法,其通过试错来学习.如上图所示,大脑代表AI Agent ...

随机推荐

  1. 初识urllib与requests

    urllib与requests 一.urllib的学习 学习目标 了解urllib的基本使用 1.urllib介绍 除了requests模块可以发送请求之外, urllib模块也可以实现请求的发送,只 ...

  2. 使用Python插入100万条数据到MySQL数据库并将数据逐步写出到多个Excel

    Python插入100万条数据到MySQL数据库 步骤一:导入所需模块和库 首先,我们需要导入 MySQL 连接器模块和 Faker 模块.MySQL 连接器模块用于连接到 MySQL 数据库,而 F ...

  3. 你不知道的java对象序列化的秘密

    目录 简介 什么是序列化 重构序列化对象 序列化不是加密 使用真正的加密 使用代理 Serializable和Externalizable的区别 总结 简介 你知道序列化可以使用代理吗?你知道序列化的 ...

  4. Push failed idea将项目发布到gitHub失败

    此时需要点击VCS --> inport into version..-->create git ...重新生成仓库

  5. AI数字人克隆人直播源码独立部署的应用!

    AI虚拟数字人正在从概念性试验品逐步落地到实际应用场景,特别是在电商直播领域,AI数字人虚拟主播应用可以说是大放异彩,目前,以真人形象为基础的数字人主播,不受场地.真人.布景.灯光.直播设备的限制,相 ...

  6. 报表如何集成 echarts 官网示例图

    Echarts,江湖人称一个纯 Javascript 的图表库,图形种类星罗棋布且个个颜值爆表,可以轻松驾驭 PC 和移动设备,与绝大部分浏览器都可称兄道弟,而且已然众多拥趸,还有不少报表对它采取了嫁 ...

  7. redis 简单整理——哨兵部署业务图[二十九]

    前言 简单介绍一下哨兵的部署业务图,非部署步骤. 正文 看一下部署的拓扑图: 然后这里用docker 来部署一下哨兵模式. 搭建一主二从. version: '3.7' services: maste ...

  8. c# Mutex 互斥锁

    前言 互斥锁(Mutex) 互斥锁是一个互斥的同步对象,意味着同一时间有且仅有一个线程可以获取它. 互斥锁可适用于一个共享资源每次只能被一个线程访问的情况. 正文 代码: static void Ma ...

  9. 集群部署时的分布式 session 如何实现?

    面试官心理分析 面试官问了你一堆 dubbo 是怎么玩儿的,你会玩儿 dubbo 就可以把单块系统弄成分布式系统,然后分布式之后接踵而来的就是一堆问题,最大的问题就是分布式事务.接口幂等性.分布式锁, ...

  10. Serverless 架构下的 AI 应用开发:入门、实战与性能优化

    简介: 本章通过对 Serverless 架构概念的探索,对 Serverless 架构的优势与价值.挑战与困境进行分析,以及 Serverless 架构应用场景的分享,为读者介绍 Serverles ...