https://github.com/GSLabDev/pepper-box

Pepper-Box is kafka load generator plugin for jmeter. It allows to send kafka messages of type plain text(JSON, XML, CSV or any other custom format) as well as java serialized objects.

Getting Started


Pepper-Box includes four main components

  • PepperBoxKafkaSampler : This is jmeter java sampler sends messages to kafka.
  • Pepper-Box PlainText Config : This jmeter config element generates plaintext messages based on input schema template designed.
  • Pepper-Box Serialized Config : This jmeter config element generates serialized object messages based on input class and its property configurations.
  • PepperBoxLoadGenerator : This is standalone utility which can be used without jmeter.

Setup


Requirement

Pepper-Box uses Java 8 with java compiler API, hence on JMeter machine JDK 8 should be installed instead of JRE 8.

Install openjdk on Debian, Ubuntu, etc.,

sudo apt-get install openjdk-8-jdk

Install openjdk on Fedora, Oracle Linux, Red Hat Enterprise Linux, etc.,

su -c "yum install java-1.8.0-openjdk-devel"

For windows you can download oracle JDK 8 setup from here

Build Project

mvn clean install -Djmeter.version=3.0 -Dkafka.version=0.9.0.1

JMeter and Kafka version can be passed dynamically.

Once build is completed, copy jar file to JMETER_HOME/lib/ext directory.

PepperBoxKafkaSampler


This is java sampler hence in ThreadGroup add sampler as Java Request and select class as com.gslab.pepper.sampler.PepperBoxKafkaSampler

As you can see in above screen, you can configure producer properties and topic details.

  • bootstrap.servers : broker-ip-1:port, broker-ip-2:port, broker-ip-3:port
  • zookeeper.servers : zookeeper-ip-1:port, zookeeper-ip-2:port, zookeeper-ip-3:port. Note : Any one of bootstrap or zookeeper server detail is enough. if zookeeper servers are given then bootstrap.servers are retrieved dynamically from zookeeper servers.
  • kafka.topic.name : Topic on which messages will be sent
  • key.serializer : Key serializer (This is optional and can be kept as it is as we are not sending keyed messages).
  • value.serializer : For plaintext config element value can be kept same as default but for serialized config element, value serializer can be "com.gslab.pepper.input.serialized.ObjectSerializer"
  • compression.type : kafka producer compression type(none/gzip/snappy/lz4)
  • batch.size : messages batch size(increased batch size with compression like lz4 gives better throughput)
  • linger.ms : How much maximum time producer should wait till batch becomes full(should be 5-10 when increased batch size and compression is enabled)
  • buffer.memory : Total buffer memory for producer.
  • acks : Message sent acknowledgement, value can be (0/1/-1).
  • send.buffer.bytes : The size of the TCP send buffer (SO_SNDBUF) to use when sending data. If the value is -1, the OS default will be used.
  • receive.buffer.bytes : The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. If the value is -1, the OS default will be used.
  • security.protocol : kafka producer protocol. Valid values are: PLAINTEXT, SSL, SASL_PLAINTEXT, SASL_SSL.
  • message.placeholder.key : Config element message variable name. This name should be same as message placeholder key in serialized/plaintext config element.
  • kerberos.auth.enabled : YES/NO if it is disabled all below properties will be ignored
  • java.security.auth.login.config : jaas.conf of kafka Kerberos
  • java.security.krb5.conf : Kerberos server krb5.conf file
  • sasl.kerberos.service.name : Kafka Kerberos service name

Above properties are added by default in sampler as those are more significant in terms of performance in most of the cases. But you can add other non listed kafka properties with prefix "_".

For example to enable SSL properties you can add below properties

_ssl.key.password
_ssl.keystore.location
_ssl.keystore.password
_ssl.keystore.type
_ssl.truststore.location
_ssl.truststore.password
_ssl.truststore.type

Note: These are just sample properties, SSL properties are already included in kafka sampler.

Pepper-Box PlainText Config


Pepper-Box PlainText Config is jmeter config element. It takes schema template is input and generates message for each sampler request.

You can add this config element using Thread group --> Add --> Config Element --> Pepper-Box PlainText Config

Input schema template can be in any format

JSON schema template

{
"messageId":{{SEQUENCE("messageId", 1, 1)}},
"messageBody":"{{RANDOM_ALPHA_NUMERIC("abcedefghijklmnopqrwxyzABCDEFGHIJKLMNOPQRWXYZ", 100)}}",
"messageCategory":"{{RANDOM_STRING("Finance", "Insurance", "Healthcare", "Shares")}}",
"messageStatus":"{{RANDOM_STRING("Accepted","Pending","Processing","Rejected")}}",
"messageTime":{{TIMESTAMP()}}
}

XML schema template

<message>
<messageId>{{SEQUENCE("messageId", 1, 1)}}</messageId>
<messageBody>{{RANDOM_ALPHA_NUMERIC("abcedefghijklmnopqrwxyzABCDEFGHIJKLMNOPQRWXYZ", 100)}}</messageBody>
<messageCategory>{{RANDOM_STRING("Finance", "Insurance", "Healthcare", "Shares")}}</messageCategory>
<messageStatus>{{RANDOM_STRING("Accepted","Pending","Processing","Rejected")}}</messageStatus>
<messageTime>{{TIMESTAMP()}}</messageTime>
</message>

Custom schema template

Hello {{FIRST_NAME()}}

	This is sample message sending at {{DATE("dd/MM/yyyy HH:mm:ss")}}.

Thanks and Regards,
{{FIRST_NAME()}} {{LAST_NAME()}}

Pepper-Box Serialized Config


Java serialized objects can be sent to kafka using Pepper-Box Serialized Config Element. This config element can be added using Thread group --> Add --> Config Element --> Pepper-Box Serialized Config

Follow below steps to use this config element,

  • Enter fully qualified name in class name section (e.g. com.gslab.pepper.Message in above screen). This class should be present in jmeter classpath folder(lib or lib/ext). You can copy jar containing required class to JMETER_HOME/lib/ext folder.
  • Click on load button which will populate all fields of given class with default values as Ignore means field value will not set.
  • Assign function expression to each field.

Example Class,

package com.gslab.pepper;
import java.io.Serializable;
public class Message implements Serializable{ private long messageId;
private String messageBody;
private String messageStatus;
private String messageCategory;
private long messageTime; public long getMessageId() {
return messageId;
} public void setMessageId(long messageId) {
this.messageId = messageId;
} public String getMessageBody() {
return messageBody;
} public void setMessageBody(String messageBody) {
this.messageBody = messageBody;
} public String getMessageStatus() {
return messageStatus;
} public void setMessageStatus(String messageStatus) {
this.messageStatus = messageStatus;
} public String getMessageCategory() {
return messageCategory;
} public void setMessageCategory(String messageCategory) {
this.messageCategory = messageCategory;
} public long getMessageTime() {
return messageTime;
} public void setMessageTime(long messageTime) {
this.messageTime = messageTime;
}
}

Please make sure that function return type and field data type should be compatible with each other.

PepperBoxLoadGenerator

PepperBoxLoadGenerator is console plaintext load generation utility.

Command,

java -cp pepper-box-1.0.jar  com.gslab.pepper.PepperBoxLoadGenerator --schema-file <schema file absolute path> --producer-config-file <producer properties absoulte path>  --throughput-per-producer <throughput rate per producer> --test-duration <test duration in seconds> --num-producers <number of producers>

Example

  • Schema file
{
"messageId":{{SEQUENCE("messageId", 1, 1)}},
"messageBody":"{{RANDOM_ALPHA_NUMERIC("abcedefghijklmnopqrwxyzABCDEFGHIJKLMNOPQRWXYZ", 100)}}",
"messageCategory":"{{RANDOM_STRING("Finance", "Insurance", "Healthcare", "Shares")}}",
"messageStatus":"{{RANDOM_STRING("Accepted","Pending","Processing","Rejected")}}",
"messageTime":{{TIMESTAMP()}}
}
  • producer properties file
bootstrap.servers=<Broker List>
zookeeper.servers=<Zookeeper List>
kafka.topic.name=<kafka topic>
key.serializer=org.apache.kafka.common.serialization.StringSerializer
value.serializer=org.apache.kafka.common.serialization.StringSerializer
acks=0
send.buffer.bytes=131072
receive.buffer.bytes=32768
batch.size=16384
linger.ms=0
buffer.memory=33554432
compression.type=none
security.protocol=PLAINTEXT
kerberos.auth.enabled=NO
java.security.auth.login.config=<JAAS File Location>
java.security.krb5.conf=<krb5.conf location>
sasl.kerberos.service.name=<Kerberos service name>

For schema file and producer properties file most of the features same as jmeter plain text config element.

We have also included pepper_box.jmx jmeter sample test file which can be directly imported in jmeter.

Schema Template Functions


Pepper-Box provides various template functions for random data generation,

Function Details Example(For serialized use without {{ }}) Returns
TIMESTAMP() current time in long {{TIMESTAMP()}} Long
TIMESTAMP(startDate, endDate) Random long date between two Dates {{TIMESTAMP("01-05-1998 10:30:12","03-03-2017 12:12:12")}} Long
DATE(format) current date with given format {{DATE("dd-MM-yyyy HH:mm:ss")}} String
RANDOM_STRING(string1, string2, string3,...) Random string among given {{RANDOM_STRING("ONE","TWO","THREE","FOUR")}} String
RANDOM_INT(int1, int2, int3,...) Random integer among given {{RANDOM_INT(1, 2, 3, 4)}} Integer
RANDOM_FLOAT(float1, float2, float3,...) Random float among given {{RANDOM_FLOAT(1.1F ,2.1F, 3.1F, 4.1F)}} Float
RANDOM_DOUBLE(double1, double2, double3,...) Random double among given {{RANDOM_DOUBLE(1.1, 2.1, 3.1, 4.1)}} Double
RANDOM_LONG(long1, long2, long3,...) Random long among given {{RANDOM_LONG(1, 2, 3, 4)}} Long
RANDOM_INT_RANGE(min, max) Random integer among given {{RANDOM_INT_RANGE(1,100)}} Integer
RANDOM_FLOAT_RANGE(min, max) Random float between min and max {{RANDOM_FLOAT_RANGE(1.0F, 100.0F)}} Float
RANDOM_FLOAT_RANGE(min, max) Random double between min and max {{RANDOM_FLOAT_RANGE(1.0, 100.0)}} Double
RANDOM_LONG_RANGE(min, max) Random long between min and max {{RANDOM_LONG_RANGE(1,100)}} Long
FIRST_NAME() Random first name {{FIRST_NAME()}} String
LAST_NAME() Random last name {{LAST_NAME()}} String
RANDOM_ALPHA_NUMERIC(charSet, length) Random string of given length from given char set {{RANDOM_ALPHA_NUMERIC("abcdefghijklmn", 10)}} String
UUID() Random UUID {{UUID()}} String
SEQUENCE(sequenceId, startValue, incrementBy) Generates incremental sequence {{SEQUENCE("messageId", 1, 1)}} Long
PHONE() Random 10 digit phone number {{PHONE()}} String
GENDER() Random gender {{GENDER()}} String
BOOLEAN() Random boolean {{BOOLEAN()}} boolean
EMAIL(domain) Random email id for given domain {{EMAIL("test.com")}} String
USERNAME() Random username {{USERNAME()}} String
IPV4() Random IPV4 address {{IPV4()}} String
IPV6() Random IPV6 address {{IPV6()}} String

Custom Functions

Apart from these functions, you can also add your own custom function in com.gslab.pepper.input.CustomFunctions class. Please make sure that those are static functions.

Example

public static float AVG(float... floats){
int count = floats.length;
float sum = 0.0;
for (float number : floats){
sum += number;
}
return sum/count;
}

AVG function can be used in schema as shown below,

{{AVG(32.2, 34.5, 64.2)}}

Note: While writing custom functions, please try to keep data in memory or scale your function as much other functions otherwise your custom function itself becomes performance bottlneck. e.g. you need some record ids from RDBMS for some schema fields, instead of querying every time bring all ids inmemory and get random id from those ids.

You can also add manipulations on template functions, for example TIMESTAMP() function returns time in milliseconds but you can get time in seconds,

{{java.util.concurrent.TimeUnit.MILLISECONDS.toSeconds(TIMESTAMP())}}

Special Thanks!

[转帖]Pepper-Box - Kafka Load Generator的更多相关文章

  1. win7下安装load generator

    win7下只安装loadrunner load generator 1.点击setup.exe 2.选择“loadrunner 完整安装程序”   3.安装完成所需要的插件,然后重启 4.重新打开安装 ...

  2. 在 Linux 系统中安装Load Generator ,并在windows 调用方法

    在 Linux 系统中安装Load Generator ,并在windows 调用 由于公司需要测试系统的最大用户承受能力,所以需要学习使用loadrunner.在安装的时候碰到了不少问题,所以写下此 ...

  3. loadrunner controller:设置多个load generator

      下面讲一下如何使用多台电脑进行负载测试. 1)         打开load generator,如图所示默认已添加了我们本地的Generator: 2)         点击"Add. ...

  4. Load generator连接失败的解决办法!(转)

    环境:1.loadrunner control 一台物理机(win2008r2) 2.loadrunner agent 两台物理机(win2008r2) 问题:loadrunner control 连 ...

  5. Linux下安装load generator步骤及问题解决

    Linux下安装load generator步骤及问题解决 上一篇 / 下一篇  2014-08-06 18:33:00 / 个人分类:loadrunner相关 查看( 146 ) / 评论( 0 ) ...

  6. 在 Linux 系统中安装Load Generator ,并在windows 调用

    原文地址:http://www.blogjava.net/qileilove/archive/2012/03/14/371861.html 由于公司需要测试系统的最大用户承受能力,所以需要学习使用lo ...

  7. 在liunx系统安装负载生成器(Load Generator)

    #初始化系统 yum -y update yum -y install ntpdate ntpdate asia.pool.ntp.org yum -y install wget make cmake ...

  8. loadrunner load generator设置init人数

    Load Generator中还有一个很重要的设置.就是用来设置init人数的,我们在运行脚本的时候会发现,在场景监控中,init默认不会超过50个人,也就是最大并发是50个人,我们想使用超过50个人 ...

  9. LoadRunner 2020 社区版本负载机(Load generator)Linux 安装教程

    1.HP官方注册 下载 LoadRunner_2020_Edition_Standalone_Applications_Micro_Focus_LoadRunner_2020_Community_Ed ...

  10. [转帖]Docker save and load镜像保存

    Docker save and load镜像保存 https://www.cnblogs.com/zhuochong/p/10064350.html docker save 和 load 以及 imp ...

随机推荐

  1. 文心一言 VS chatgpt (21)-- h264编码一帧数据的流程是怎样的?

    h264编码一帧数据的流程是怎样的? 文心一言: H.264编码将一帧数据分成多个块,其中每个块可以单独进行编码.编码的过程包括预测.变换和量化等步骤. 具体流程如下: 1.帧内预测:对一帧视频进行编 ...

  2. 动手实践丨基于ModelAtrs使用A2C算法制作登月器着陆小游戏

    摘要:在本案例中,我们将展示如何基于A2C算法,训练一个LunarLander小游戏. 本文分享自华为云社区<使用A2C算法控制登月器着陆>,作者:HWCloudAI . LunarLan ...

  3. 想会用synchronized锁,先掌握底层核心原理

    摘要:synchronized锁修饰方法和代码块时底层实现上是一样的,但是在修饰方法时,不需要JVM编译出的字节码完成加锁操作,而synchronized在修饰代码块时,是通过编译出来的字节码生成的m ...

  4. 8种图数据库对 NULL 属性值支持情况

    摘要:在语义网等图模型中,遵循开放世界假设,对于数据中未包含的事实,都认为是未知的而非假的. 本文分享自华为云社区<图数据库对 NULL 属性值支持情况>,原文作者:你好_TT . NUL ...

  5. 火山引擎DataLeap的Catalog系统搜索实践 (二):整体架构

    整体架构 火山引擎DataLeap的Catalog搜索系统使用了开源的搜索引擎Elasticsearch进行基础的文档检索(Recall阶段),因此各种资产元数据会被存放到Elasticsearch中 ...

  6. TeamX 引擎的高并发能力测试

    TeamX,是基于 SolonJT 引擎构建的一个团队协工具.主要功能有: Wiki(团队词条,用于写接口文档也行...) Planned(项目计划 和 个人日志) 比较兄弟产品,区别会很大:基于表格 ...

  7. 聊一聊为什么我要整合Microsoft.Extensions.DependencyInjection和Castle.Core

    前言 如果用到动态代理,大家可能会有几种选择,排到前列的是Autofac+Castle.AspectCore和DoraInterception, 我将从我当时研究的经历,以及我遇到的场景,为大家展示下 ...

  8. 多种方式实现 Future 回调返回结果

    JDK  实现 public class FutureTest { public static void main(String[] args) throws Exception { Executor ...

  9. 国内使用 Mac OS 快速安装 Homebrew

    问题描述 使用新的 Mac 电脑开发,没有安装 Homebrew 确实不行,但是国内访问 github,很不稳定,运行 /bin/bash -c "$(curl -fsSL https:// ...

  10. vivo 商城前端架构升级—前后端分离篇

    本文主要以 vivo 商城项目的前后端分离经验,总结前后端分离思路,整理前后端分离方案,以及分离过程中遇到的问题及解决方案. 一.前言 vivo官方商城在2015年创建网上商城,开辟网络销售渠道,几年 ...