题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2734


考虑$N=4$的情况:

\begin{bmatrix}
1&3 &X \\
2&X &X \\
4&X &X
\end{bmatrix}

其实就是吧最小值丢在了矩阵中${(0,0)}$的位置上,对于矩阵中的任意位置令${f[i][j]=f[i][j-1]*3}$,${f[i][j]=f[i-1][j]*2}$。

这样一来问题就转换为了:在一个矩阵中选取任意多的数字使得没有两个相邻的数字被同时选取的方案数。这个就是经典的轮廓线DP模型。

但是我们注意到并不是一个矩阵就覆盖了所有的数字,所以我们需要记录哪些数字已经在矩阵中出现过了,从小到大枚举数字,对于还没有出现的数字再把它丢到${(0,0)}$的位置在构造一个矩阵并进行DP。利用乘法原理计算贡献,易证一个数字有且仅有在一个矩阵中出现,所以这样就可以打成补充不漏的效果。


 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cstdlib>
#include<cmath>
#include<cstring>
using namespace std;
#define maxn 1001000
#define llg long long
#define md 1000000001
#define yyj(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
llg n,m,N,ans,flag[maxn];
llg val[][],f[][(<<)];
llg work(llg S)
{
memset(val,,sizeof(val));
n=m=;
flag[S]=;
llg x=S;
val[][]=S;
while (x*<=N) {n++; val[n][]=val[n-][]*; flag[val[n][]]=; x*=; }
x=S;
while (x*<=N) {m++; val[][m]=val[][m-]*; flag[val[][m]]=; x*=;}
for (llg i=;i<=n;i++)
for (llg j=;j<=m;j++)
{
if (val[i][j-]*>N) break;
val[i][j]=val[i][j-]*;
flag[val[i][j]]=;
}
llg la=,now;
memset(f,,sizeof(f));
f[la][]=;
for (llg i=;i<=n;i++)
for (llg j=;j<=m;j++)
{
now=la^;
memset(f[now],,sizeof(f[now]));
for (llg zt=;zt<=(<<(m+));zt++)
if (f[la][zt]!=)
{
llg nzt=zt;
f[la][zt]%=md;
if (nzt&(<<j)) nzt-=(<<j);
f[now][nzt]+=f[la][zt];
if ((val[i][j]==) || (zt&(<<j))) continue;
if (j!=)
{
if (zt&(<<(j-))) continue;
}
nzt=zt;
nzt|=(<<j);
f[now][nzt]+=f[la][zt];
}
la=now;
}
llg tot=;
for (llg i=;i<=(<<(m+));i++) tot+=f[now][i];
tot%=md;
return tot;
} int main()
{
yyj("a");
cin>>N;
ans=;
for (llg i=;i<=N;i++)
if (!flag[i])
{
ans*=work(i);
ans%=md;
}
cout<<ans;
return ;
}

【BZOJ】2734: [HNOI2012]集合选数的更多相关文章

  1. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  2. bzoj 2734: [HNOI2012]集合选数

    题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...

  3. 【刷题】BZOJ 2734 [HNOI2012]集合选数

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

  4. BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...

  5. BZOJ 2734: [HNOI2012]集合选数 [DP 状压 转化]

    传送门 题意:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足若 x 在该子集中,则 2x 和 3x 不能在该子集中的子集的个数(只需输出对 1,000,000,001 ...

  6. bzoj 2734 [HNOI2012]集合选数 状压DP+预处理

    这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #inclu ...

  7. 2734: [HNOI2012]集合选数

    2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...

  8. 2734: [HNOI2012]集合选数 - BZOJ

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

  9. BZOJ_2734_[HNOI2012]集合选数_构造+状压DP

    BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...

随机推荐

  1. [转载]ORA-01502错误成因和解决方法

    检查一下索引状态,我们会注意到索引已经是“UNUSABLE”了.SQL> select index_name,index_type,tablespace_name,table_type,stat ...

  2. 洛谷 P1010 幂次方

    做了好久,递归拆吧 #include<iostream>#include<cstdio>#include<cmath>using namespace std;int ...

  3. log4j2笔记 #02# 启用异步日志

    索引 参考 Making All Loggers Asynchronous 第一步,添加相应的disruptor库 第二步,设置系统属性log4j2.contextSelector 第三步,检验! 参 ...

  4. mycat分片操作

    mycat位于应用与数据库的中间层,可以灵活解耦应用与数据库,后端数据库可以位于不同的主机上.在mycat中将表分为两大类:对于数据量小且不需要做数据切片的表,称之为分片表:对于数据量大到单库性能,容 ...

  5. 叶亚明:合格CTO的六要素(转)

    叶亚明,携程旅行网CTO & 高级技术副总裁,负责携程的移动.Online.呼叫中心等的技术架构.开发及运营.在加入携程之前,叶亚明是ebay.com技术平台总监,领导ebay.com几代网站 ...

  6. Android之socket客户端

    接收数据不要用readline(),用read() Socket mSocket = new Socket("192.168.1.100", 8888); DataInputStr ...

  7. 20165310 NetSec2019 Week5 Exp3 免杀原理与实践

    20165310 NetSec2019 Week5 Exp3 免杀原理与实践 一.免杀原理 杀软是如何检测出恶意代码的 基于特征码的检测:特征码就是一段恶意程序有但是正常程序没有的一段代码,当杀软检测 ...

  8. 为什么call比apply快

    这是一个非常有意思的问题. 在看源码的过程中,总会遇到这样的写法: var triggerEvents = function(events, args) { var ev, i = -1, l = e ...

  9. android 去掉主题

      1 可以在xml中配置2.0之后 <application android:allowBackup="true" android:icon="@drawable ...

  10. topcoder srm 415 div1

    problem1 link 每次贪心地从crans由大到小地找到一个能搬得动地尽量大地box即可. problem2 link 首先,$hava$可以全部换成钱,然后就是找到一个最小的钱减去自己已有的 ...