Medium!

题目描述:

给定一个 × n 的二维矩阵表示一个图像。

将图像顺时针旋转 90 度。

说明:

你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。

示例 1:

给定 matrix =
[
[1,2,3],
[4,5,6],
[7,8,9]
], 原地旋转输入矩阵,使其变为:
[
[7,4,1],
[8,5,2],
[9,6,3]
]

示例 2:

给定 matrix =
[
[ 5, 1, 9,11],
[ 2, 4, 8,10],
[13, 3, 6, 7],
[15,14,12,16]
], 原地旋转输入矩阵,使其变为:
[
[15,13, 2, 5],
[14, 3, 4, 1],
[12, 6, 8, 9],
[16, 7,10,11]
]

解题思路:

在计算机图像处理里,旋转图片是很常见的,由于图片的本质是二维数组,所以也就变成了对数组的操作处理,翻转的本质就是某个位置上数移动到另一个位置上,比如用一个简单的例子来分析:

1  2  3       7  4  1 

4  5  6  -->   8  5  2  

7  8  9       9  6  3

对于90度的翻转有很多方法,一步或多步都可以解,我们先来看一种直接的方法,对于当前位置,计算旋转后的新位置,然后再计算下一个新位置,第四个位置又变成当前位置了,所以这个方法每次循环换四个数字,如下所示:

1  2  3                 7  2                        1

4  5  6      -->      4  5  6   -->    8  5  2  

7  8  9                   8        9    3

C++解法一:

 class Solution {
public:
void rotate(vector<vector<int> > &matrix) {
int n = matrix.size();
for (int i = ; i < n / ; ++i) {
for (int j = i; j < n - - i; ++j) {
int tmp = matrix[i][j];
matrix[i][j] = matrix[n - - j][i];
matrix[n - - j][i] = matrix[n - - i][n - - j];
matrix[n - - i][n - - j] = matrix[j][n - - i];
matrix[j][n - - i] = tmp;
}
}
}
};

还有一种解法,首先以从对角线为轴翻转,然后再以x轴中线上下翻转即可得到结果,如下图所示(其中蓝色数字表示翻转轴):

1  2  3       9  6         7  4  1

4  5  6  -->   8       -->     8  5  2  

7  8  9       7  4  1       9  6  3

C++解法二:

 class Solution {
public:
void rotate(vector<vector<int> > &matrix) {
int n = matrix.size();
for (int i = ; i < n - ; ++i) {
for (int j = ; j < n - i; ++j) {
swap(matrix[i][j], matrix[n - - j][n - - i]);
}
}
for (int i = ; i < n / ; ++i) {
for (int j = ; j < n; ++j) {
swap(matrix[i][j], matrix[n - - i][j]);
}
}
}
};

最后再来看一种方法,这种方法首先对原数组取其转置矩阵,然后把每行的数字翻转可得到结果,如下所示(其中蓝色数字表示翻转轴):

1  2  3       1  4  7       7  4  1

4  5  6  -->   2  5  8   -->     8  5  2  

7  8  9       3  6  9          9  6  3

C++解法三:

 class Solution {
public:
void rotate(vector<vector<int> > &matrix) {
int n = matrix.size();
for (int i = ; i < n; ++i) {
for (int j = i + ; j < n; ++j) {
swap(matrix[i][j], matrix[j][i]);
}
reverse(matrix[i].begin(), matrix[i].end());
}
}
};

LeetCode(48):旋转图像的更多相关文章

  1. 前端与算法 leetcode 48. 旋转图像

    目录 # 前端与算法 leetcode 48. 旋转图像 题目描述 概要 提示 解析 解法一:转置加翻转 解法二:在单次循环中旋转 4 个矩形 算法 传入测试用例的运行结果 执行结果 GitHub仓库 ...

  2. Java实现 LeetCode 48 旋转图像

    48. 旋转图像 给定一个 n × n 的二维矩阵表示一个图像. 将图像顺时针旋转 90 度. 说明: 你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵.请不要使用另一个矩阵来旋转图像. 示 ...

  3. [leetcode] 48. 旋转图像(Java)(模拟)

    48. 旋转图像 模拟题,其实挺不喜欢做模拟题的... 其实这题一层一层的转就好了,外层转完里层再转,其实就是可重叠的子问题了. 转的时候呢,一个数一个数的转,一个数带动四个数.如图所示,2这个数应该 ...

  4. LeetCode——48. 旋转图像

    给定一个 n × n 的二维矩阵表示一个图像. 将图像顺时针旋转 90 度. 说明: 你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵.请不要使用另一个矩阵来旋转图像. 示例 1: 给定 m ...

  5. python(leetcode)-48旋转图像

    给定一个 n × n 的二维矩阵表示一个图像. 将图像顺时针旋转 90 度. 说明: 你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵.请不要使用另一个矩阵来旋转图像. 示例 1: 给定 m ...

  6. LeetCode 48. 旋转图像(Rotate Image)

    题目描述 给定一个 n × n 的二维矩阵表示一个图像. 将图像顺时针旋转 90 度. 说明: 你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵.请不要使用另一个矩阵来旋转图像. 示例 1: ...

  7. leetcode 48. 旋转图像 java

    class Solution { public void rotate(int[][] matrix) { int n = matrix.length; for (int k = 0; k < ...

  8. LeetCode:旋转图像【48】

    LeetCode:旋转图像[48] 题目描述 给定一个 n × n 的二维矩阵表示一个图像. 将图像顺时针旋转 90 度. 说明: 你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵.请不要使 ...

  9. [array] leetcode - 48. Rotate Image - Medium

    leetcode - 48. Rotate Image - Medium descrition You are given an n x n 2D matrix representing an ima ...

  10. [LeetCode] 48. Rotate Image 旋转图像

    You are given an n x n 2D matrix representing an image. Rotate the image by 90 degrees (clockwise). ...

随机推荐

  1. SQL Server 2008 数据库回滚到某个时间点

    数据库回滚到时间的的前提: 事务日志完整,数据库在完整恢复模式下进行过一次完整备份,数据库没有进行过还原操作(惨痛教训). 当数据库误操作时,切记冷静,不然问题就是滚雪球, 在不做下一步错误前  可观 ...

  2. C# 多窗体之间方法调用

    看似一个简单的功能需求,其实很多初学者处理不好的,很多朋友会这么写: //父窗体是是frmParent,子窗体是frmChildA //在父窗体中打开子窗体 frmChildA child = new ...

  3. excel多元回归-系数参数解读

    sklearn实战-乳腺癌细胞数据挖掘 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campai ...

  4. jenkins master-slave配置

    如果要想自动化构建,需要slave主机能够从源码库上拉代码,并打包构建 选取指定的slave进行构建 jenkins + docker 实现slave的动态构建和销毁 https://www.cnbl ...

  5. buildroot构建项目(三)--- u-boot 2017.11 适配开发板修改 1

    当前虽然编译成功了,但是对于我们自己的目标板并不太适用.还得做一系列得修改. 一.lds 文件分析 u-boot 中最重要得链接文件即是,u-boot.lds.我们可以查看我们编译出来得 u-boot ...

  6. html5 流动布局

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...

  7. JavaScript之从浏览器一键获取教务处个人课程信息【插件】

    由于博主的个人网站(:http://www.johnnyzen.cn/),每学期都需要更新呈现课程的静态信息,由于课程量多,而且手动爬取很冗杂,特别想自动化实现.这不,今天终于有点时间了,把之前写no ...

  8. [JLOI2015]装备购买 (高斯消元)

    [JLOI2015]装备购买 \(solution:\) 首先这道题的题面已经非常清晰的告诉我们这就是线性空间高斯消元的一道题(可以用某些装备来表示另一件装备,这已经不能再明显了),只是这道题要求我们 ...

  9. B - 低阶入门膜法 - D-query (查询区间内有多少不同的数)

    题目链接:https://cn.vjudge.net/contest/284294#problem/B 题目大意:查询区间内有多少个不相同的数. 具体思路:主席树的做法,主席树的基础做法是查询区间第k ...

  10. 解决:[DCC Fatal Error] **.dpk : E2202 Required package '***' not found

    //[DCC Fatal Error] **.dpk : E2202 Required package '***' not found 意思是:[DCC致命错误] *:e2202需包***没有发现 D ...