[SNOI2017]一个简单的询问

题目大意:

给定一个长度为\(n(n\le50000)\)的序列\(A(1\le A_i\le n)\),定义\(\operatorname{get}(l,r,x)\)为区间\(A_{[l,r]}\)中\(x\)的出现次数。\(m(m\le50000)\)次询问,每次给出\(l_1,r_1,l_2,r_2\),求\(\sum_{x=0}^{\infty}\operatorname{get}(l_1,r_1,x)\cdot\operatorname{get}(l_2,r_2,x)\)。

思路:

\[\operatorname{ans}(l_1,r_1,l_2,r_2)=\operatorname{ans}(1,r_1,1,r_2)-\operatorname{ans}(1,l_1-1,1,r_2)-\operatorname{ans}(1,r_1,1,l_2-1)+\operatorname{ans}(1,l_1-1,1,l_2-1)
\]

因此将每组询问拆成\(4\)个,然后直接套用莫队算法即可。

时间复杂度\(\mathcal O(n\sqrt n)\)。

源代码:

#include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int N=5e4+1,M=5e4;
int n,a[N],block,cnt[2][N];
int64 tmp,ans[M];
struct Query {
int p0,p1,id,type;
bool operator < (const Query &rhs) const {
if(p0/block==rhs.p0/block) return p1<rhs.p1;
return p0/block<rhs.p0/block;
}
};
Query q[M*4];
inline void ins(const bool &t,const int &x) {
tmp-=(int64)cnt[0][x]*cnt[1][x];
cnt[t][x]++;
tmp+=(int64)cnt[0][x]*cnt[1][x];
}
inline void del(const bool &t,const int &x) {
tmp-=(int64)cnt[0][x]*cnt[1][x];
cnt[t][x]--;
tmp+=(int64)cnt[0][x]*cnt[1][x];
}
int main() {
block=sqrt(n=getint());
for(register int i=1;i<=n;i++) a[i]=getint();
const int m=getint();
int tot=0;
for(register int i=0;i<m;i++) {
const int l1=getint(),r1=getint(),l2=getint(),r2=getint();
q[tot++]=(Query){r1,r2,i,1};
if(l2>1) q[tot++]=(Query){r1,l2-1,i,-1};
if(l1>1) q[tot++]=(Query){l1-1,r2,i,-1};
if(l1>1&&l2>1) q[tot++]=(Query){l1-1,l2-1,i,1};
}
std::sort(&q[0],&q[tot]);
for(register int i=0,p0=0,p1=0;i<tot;i++) {
while(p0<q[i].p0) ins(0,a[++p0]);
while(p1<q[i].p1) ins(1,a[++p1]);
while(p0>q[i].p0) del(0,a[p0--]);
while(p1>q[i].p1) del(1,a[p1--]);
ans[q[i].id]+=tmp*q[i].type;
}
for(register int i=0;i<m;i++) {
printf("%lld\n",ans[i]);
}
return 0;
}

[SNOI2017]一个简单的询问的更多相关文章

  1. 【BZOJ5016】[Snoi2017]一个简单的询问 莫队

    [BZOJ5016][Snoi2017]一个简单的询问 Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计 ...

  2. bzoj P5016[Snoi2017]一个简单的询问——solution

    Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出   get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. Input ...

  3. bzoj 5016: [Snoi2017]一个简单的询问

    Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. Input 第 ...

  4. [bzoj5016][Snoi2017]一个简单的询问

    来自FallDream的博客,未经允许,请勿转载,谢谢. 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出   get(l,r,x)表示计算区间[l,r]中 ...

  5. Gym101138D Strange Queries/BZOJ5016 SNOI2017 一个简单的询问 莫队、前缀和、容斥

    传送门--Gym 传送门--BZOJ THUWC2019D1T1撞题可还行 以前有些人做过还问过我,但是我没有珍惜,直到进入考场才追悔莫及-- 设\(que_{i,j}\)表示询问\((1,i,1,j ...

  6. [SNOI2017]一个简单的询问【莫队+容斥原理】

    题目大意 给你一个数列,让你求两个区间内各个数出现次数的乘积的和. 分析 数据范围告诉我们可以用莫队过. 我并不知道什么曼哈顿什么乱七八糟的东西,但是我们可以用容斥原理将这个式子展开来. \[\sum ...

  7. BZOJ5016:[SNOI2017]一个简单的询问(莫队)

    Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. Input 第 ...

  8. 【bzoj5016】[Snoi2017]一个简单的询问 莫队算法

    题目描述 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. 输入 第一行,一个数字N,表 ...

  9. bzoj5016 & loj2254 [Snoi2017]一个简单的询问 莫队

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5016 https://loj.ac/problem/2254 题解 原式是这样的 \[ \su ...

随机推荐

  1. xargs -i和-I的区别【转】

    xargs与find经常结合来进行文件操作,平时删日志的时候只是习惯的去删除,比如  # find . -type f -name "*.log" | xargs rm -rf * ...

  2. ES系列十六、集群配置和维护管理

    一.修改配置文件 1.节点配置 1.vim elasticsearch.yml # ======================== Elasticsearch Configuration ===== ...

  3. mysql系列十、mysql索引结构的实现B+树/B-树原理

    一.MySQL索引原理 1.索引背景 生活中随处可见索引的例子,如火车站的车次表.图书的目录等.它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的 ...

  4. Windows 10 的一些快捷键

    Win键 + Q: 呼出[Cortana] Win键 + W:呼出[Windows INNK 工作区] Win键 + E: 呼出[资源管理器] Win键 + R: 呼出[运行] Win键 + A: 呼 ...

  5. echo -e 参数

    -e  若字符串中出现以下字符,则特别加以处理,而不会将它当成一般文字输出: \a   发出警告声:   \b  删除前一个字符:   \c  最后不加上换行符号:   \f  换行但光标仍旧停留在原 ...

  6. shell expect权威指南和实战

    一.概述 我们通过Shell可以实现简单的控制流功能,如:循环.判断等.但是对于需要交互的场合则必须通过人工来干预,有时候我们可能会需要实现和交互程序如telnet服务器等进行交互的功能.而expec ...

  7. Gradient Domain Guided Image Filtering(梯度域导向滤波)

    作者提出了一种新的梯度域引导图像滤波器,通过将明确的一阶边缘感知约束结合到现有的引导图像滤波器中. matlab代码实现 转载至:https://blog.csdn.net/majinlei121/a ...

  8. 20155309南皓芯 网络对抗《网络攻防》 Exp1 PC平台逆向破解(5)M

    实践目标 本次实践的对象是linux的可执行文件 该程序正常执行流程是:main调用foo函数,foo函数会简单回显任何用户输入的字符串. 该程序同时包含另一个代码片段,getShell,会返回一个可 ...

  9. 《转》 java.lang.OutOfMemoryError - 关于java的内存溢出

    java.lang.OutOfMemoryError: PermGen space PermGen space的全称是Permanent Generation space 是指内存的永久保存区域, 该 ...

  10. 【C++ Primer 第15章】定义派生类析构函数

    学习资料 • 基类和派生类析构函数执行顺序 定义派生类析构函数 [注意]定义一个对象时先调用基类的构造函数.然后调用派生类的构造函数:析构的时候恰好相反:先调用派生类的析构函数.然后调用基类的析构函数 ...