BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)
题目链接
斜率优化 不说了 网上很多 这的比较详细->Click Here or Here
//1700kb 60ms
#include<cstdio>
#include<cctype>
//#define gc() getchar()
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=5e4+5,MAXIN=1e5;
int n,C,S[N],q[N];
char IN[MAXIN],*SS=IN,*TT=IN;
LL f[N];
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
inline LL Squ(LL x){
return x*x;
}
inline LL X(int j,int k){
return (S[j]-S[k])<<1;
}
inline LL Y(int j,int k){
return f[j]+Squ(S[j]+C)-(f[k]+Squ(S[k]+C));
}
int main()
{
n=read(),C=read()+1;
for(int i=1;i<=n;++i) S[i]=S[i-1]+read()+1;
// for(int i=1;i<=n;++i) S[i]+=i;
int h=1,t=1; q[1]=0;
for(int i=1;i<=n;++i)
{
while(h<t && Y(q[h+1],q[h])<=S[i]*X(q[h+1],q[h])) ++h;
f[i]=f[q[h]]+Squ(S[i]-S[q[h]]-C);
while(h<t && Y(i,q[t])*X(q[t],q[t-1])<=Y(q[t],q[t-1])*X(i,q[t])) --t;
q[++t]=i;
}
printf("%lld",f[n]);
return 0;
}
由决策单调,单调队列写法:\(\mathcal O(n\log n)\)
//2288kb 140ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 100000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=50005;
int n,L;
LL sum[N],f[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Node{
int l,r,pos;//pos是区间[l,r]的最优转移点
}q[N];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline LL Squ(LL x){
return x*x;
}
inline LL Cost(int i,int p){//在i之前,分割p处
return f[p]+Squ((LL)(i-p-1+sum[i]-sum[p]-L));
}
int Find(Node t,int x)
{
int l=t.l, r=t.r, mid;
while(l<=r)
if(mid=l+r>>1, Cost(mid,x)<Cost(mid,t.pos)) r=mid-1;
else l=mid+1;
return l;
}
int main()
{
n=read(), L=read();
for(int i=1; i<=n; ++i) sum[i]=sum[i-1]+read();
int h=1,t=1; q[1]=(Node){0,n,0};
for(int i=1; i<=n; ++i)
{
if(i>q[h].r) ++h;
f[i]=Cost(i,q[h].pos);
if(Cost(n,i)<Cost(n,q[t].pos))//为什么要拿n比??不解。
{
while(h<=t && Cost(q[t].l,i)<Cost(q[t].l,q[t].pos)) --t;//队尾区间的l用i都比pos更优了,而决策点是单调的,所以[l,r]肯定都要不选pos而选i了
if(h>t) q[++t]=(Node){i,n,i};
else
{
int Pos=Find(q[t],i);
q[t].r=Pos-1, q[++t]=(Node){Pos,n,i};
}
}
}
printf("%lld",f[n]);
return 0;
}
BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)的更多相关文章
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...
- BZOJ 1010 [HNOI2008]玩具装箱toy:斜率优化dp
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 有n条线段,长度分别为C[i]. 你需要将所有的线段分成若干组,每组中线段的 ...
- 1010: [HNOI2008]玩具装箱toy [dp][斜率优化]
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- [bzoj1010](HNOI2008)玩具装箱toy(动态规划+斜率优化+单调队列)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有 的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...
- 1010: [HNOI2008]玩具装箱toy(斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 12280 Solved: 5277[Submit][S ...
- [HNOI2008]玩具装箱TOY --- DP + 斜率优化 / 决策单调性
[HNOI2008]玩具装箱TOY 题目描述: P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京. 他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器 ...
- BZOJ1010: [HNOI2008]玩具装箱toy(dp+斜率优化)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 12451 Solved: 5407[Submit][Status][Discuss] Descript ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
随机推荐
- mysql重置登录密码
1.停止mysql服务. services.msc进入服务界面 停止mysql服务 2.打开一个cmd窗口. 输入mysqld --skip-grant-tables 启动了一个新的mysql服务 跳 ...
- c++ 引用方式传递数组
值传递 (pass by value),指针传递(pass by pointer),当发生函数调用时,需要给形参分配存储单元.当传递是对象时,要调用拷贝构造函数.而且指针最后析构时,要处理内存释放问题 ...
- Qt5 json 数据处理
QT4中使用第三方库QJson解析JSON文件. QT5新增加了处理JSON的类,类均以QJson开头,包含在QtCore模块中. 用到的头文件 #include <QJsonArray> ...
- 转载:《理解RESTful架构》 阮一峰
原文:http://www.ruanyifeng.com/blog/2011/09/restful.html 越来越多的人开始意识到,网站即软件,而且是一种新型的软件. 这种"互联网软件&q ...
- Thymeleaf:访问Spring中的bean
项目做了动静分离,即静态文件全部放在nginx中,动态文件在tomcat中,如何引用静态文件,我是这么做的,见下: 运行结果:
- java FTPClient 上传文件 0kb 问题
解决方法: 1.本地防火墙关闭了2.服务端端防火墙关闭 CentOS 7.0关闭默认防火墙启用iptables防火墙 操作系统环境:CentOS Linux release 7.0.1406(Core ...
- Jmeter安装和启动和使用
一.安装配置JDK 1.下载安装jdk,地址:http://www.oracle.com/technetwork/java/javase/downloads/index.html 2.配置JDK环境变 ...
- linux 创建用户和密码
:useradd -m 用户名//添加用户 :passwd 用户名 //然后设置密码 :userdel -r newuser1 //删除用户 newuser1,同时删除其自家目录 samba 设置账号 ...
- Tesseract环境搭建及编译安装
Tesseract环境搭建及编译安装 Tesseract源码都是C++源码:对于不咋会C++的人来说,这真是...虽然说语言有相通性,但是...哎!!!!! 分享出来,也希望对大家有所帮助. 环境:w ...
- 字符串反转,例如"abc"反转"cba"
package stringyiwen; /* * 字符串反转,例如"abc"反转"cba" */public class StringTestChar { p ...