题解——洛谷P2613 【模板】有理数取余(扩展欧几里得算法+逆元)
题面
题目描述
给出一个有理数 c=\frac{a}{b} ,求 c mod19260817 的值。
输入输出格式
输入格式:
一共两行。
第一行,一个整数 \( a \) 。
第二行,一个整数 \( b \) 。
输出格式:
一个整数,代表求余后的结果。如果无解,输出Angry!
说明
对于所有数据,\( 0\leq a,b \leq 10^{10001},0≤a,b≤1010001 \)
很平常的一道膜板题,求解除法取模需要利用乘法逆元的知识
直接扩展欧几里得算法求解逆元
至于数据范围,可以直接在读入时取模,不需要毒瘤高精度qwq
下面放代码
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
long long a,b;
const int MOD = ;
long long read(void){
long long x=;
char c;
c=getchar();
while(c==' '||c=='\n'||c=='\r'||c=='\0')
c=getchar();
while(c<=''&&c>=''){
x=((x*%MOD)+(c-'')%MOD)%MOD;
c=getchar();
}
return x;
}
long long exgcd(long long a,long long b,long long &x,long long &y){
if(b==){
x=;
y=;
return a;
}
long long res = exgcd(b,a%b,x,y);
long long t=x;
x=y;
y=t-a/b*y;
return res;
}
int main(){
a=read();
// printf("%d\n",a);
b=read();
// printf("%d\n",b);
long long x,y;
if(exgcd(b,MOD,x,y)==){
long long nx=((x%MOD)+MOD)%MOD;
printf("%lld",((a%MOD)*(nx%MOD))%MOD);
}
else{
printf("Angry!\n");
}
return ;
}
题解——洛谷P2613 【模板】有理数取余(扩展欧几里得算法+逆元)的更多相关文章
- [洛谷P2613] [模板] 有理数取余
刷水题. 传送门 看似高精而非高精乃是此题最大亮点. 边读边取模技能get~ #include<cstdio> #define ll long long #define mod 19260 ...
- 题解 洛谷 P3210 【[HNOI2010]取石头游戏】
考虑到先手和后手都使用最优策略,所以可以像对抗搜索一样,设 \(val\) 为先手收益减去后手收益的值.那么先手想让 \(val\) 尽可能大,后手想让 \(val\) 尽可能小. 继续分析题目性质, ...
- 洛谷 P2613 【模板】有理数取余
P2613 [模板]有理数取余 题目描述 给出一个有理数c=\frac{a}{b}c=ba,求c\ \bmod 19260817c mod19260817的值. 输入输出格式 输入格式: 一共两行. ...
- 洛谷——P2613 【模板】有理数取余
P2613 [模板]有理数取余 读入优化预处理 $\frac {a}{b}\mod 19620817$ 也就是$a\times b^{-1}$ $a\times b^{-1}\mod 19620817 ...
- P2613 【模板】有理数取余 (数论)
题目 P2613 [模板]有理数取余 解析 简单的数论题 发现并没有对小数取余这一说,所以我们把原式化一下, \[(c=\frac{a}{b})\equiv a\times b^{-1}(mod\ p ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 模板 - 数学 - 同余 - 扩展Euclid算法
普通的扩展欧几里得算法,通过了洛谷的扩展欧几里得算法找乘法逆元.修复了容易溢出的bug,虽然新版本仍有可能会溢出longlong,假如参与运算的数字都是longlong,假如可以的话直接使用__int ...
- 模板——扩展欧几里得算法(求ax+by=gcd的解)
Bryce1010模板 /**** *扩展欧几里得算法 *返回d=gcd(a,b),和对应等式ax+by=d中的x,y */ long long extend_gcd(long long a,long ...
- 初等数论-Base-2(扩展欧几里得算法,同余,线性同余方程,(附:裴蜀定理的证明))
我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的 ...
随机推荐
- CentOS下nginx+php的配置及nginx开机启动配置
关闭防火墙 (不然外链接是访问不了 apache) service iptables stop 关闭安全系统 SELinux( 不然报403 访问页面错误 ) 1.Nginx安装主要在于配置文件的修改 ...
- Robot Framework 教程 (3) - Resource及关键字 的使用
From:http://www.cnblogs.com/buaawp/p/4754399.html Robot Framework 教程 (3) - Resource及关键字 的使用 在进行软件自动化 ...
- NGINX的几个应用场景
NGINX的几个应用场景 两个参考地址: NGINX的百度百科:https://baike.baidu.com/item/nginx/3817705?fr=aladdin NGINX的中文网站:htt ...
- iframe使用
iframe是一个前端页面的内联框架(即行内框架),使用很方便, <!--嵌套子页面--> <script type="text/x-template" id=& ...
- 阿里云自定义镜像可以免费保存,ECS实例到期后自定义镜像手动快照不会被删除
阿里云自定义镜像可以免费保存,ECS实例到期后自定义镜像手动快照不会被删除 4. ECS 实例释放后,自定义镜像是否还存在? 存在. 5. ECS 实例释放后,快照是否还存在? 保留手动快照,清除自动 ...
- Codeforces 841A - Generous Kefa
题目链接:http://codeforces.com/problemset/problem/841/A One day Kefa found n baloons. For convenience, w ...
- Java开发万年历
自己做出来的万年历: 以下代码: public class Test2 { public static void main(String[] args) { Scanner sc = new Sca ...
- QT多线程简单例子
在Qt中实现多线程,除了使用全局变量.还可以使用信号/槽机制. 以下例子使用信号/槽机制. 功能: 在主线程A界面上点击按钮,然后对应开起一个线程B.线程B往线程A发送一个字符串,线程A打印出来. 1 ...
- hiho一下 第145周
题目1 : 智力竞赛 时间限制:5000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi.小Ho还有被小Hi强拉来的小Z,准备组队参加一个智力竞赛.竞赛采用过关制,共计N个关卡.在第i ...
- li设置inline-block后,li左边出现空隙问题。
方法1:在ul设置font-size=0,然后再li再单独设置font-size 方法2:li连着写不要换行,也可以解决. <ul> <li>测试1</li>< ...