图文并茂的Python教程-numpy.pad

np.pad()常用与深度学习中的数据预处理,可以将numpy数组按指定的方法填充成指定的形状。
声明:

需要读者了解一点numpy数组的知识
np.pad()

对一维数组的填充

import numpy as np
arr1D = np.array([1, 1, 2, 2, 3, 4])
'''不同的填充方法'''
print 'constant: ' + str(np.pad(arr1D, (2, 3), 'constant'))
print 'edge: ' + str(np.pad(arr1D, (2, 3), 'edge'))
print 'linear_ramp: ' + str(np.pad(arr1D, (2, 3), 'linear_ramp'))
print 'maximum: ' + str(np.pad(arr1D, (2, 3), 'maximum'))
print 'mean: ' + str(np.pad(arr1D, (2, 3), 'mean'))
print 'median: ' + str(np.pad(arr1D, (2, 3), 'median'))
print 'minimum: ' + str(np.pad(arr1D, (2, 3), 'minimum'))
print 'reflect: ' + str(np.pad(arr1D, (2, 3), 'reflect'))
print 'symmetric: ' + str(np.pad(arr1D, (2, 3), 'symmetric'))
print 'wrap: ' + str(np.pad(arr1D, (2, 3), 'wrap'))

解释:
第一个参数是待填充数组
第二个参数是填充的形状,(2,3)表示前面两个,后面三个
第三个参数是填充的方法
填充方法:
constant连续一样的值填充,有关于其填充值的参数。constant_values=(x, y)时前面用x填充,后面用y填充。缺参数是为0000。。。
edge用边缘值填充
linear_ramp边缘递减的填充方式
maximum, mean, median, minimum分别用最大值、均值、中位数和最小值填充
reflect, symmetric都是对称填充。前一个是关于边缘对称,后一个是关于边缘外的空气对称╮(╯▽╰)╭
wrap用原数组后面的值填充前面,前面的值填充后面
也可以有其他自定义的填充方法
对多维数组的填充

import numpy as np
arr3D = np.array([[[1, 1, 2, 2, 3, 4], [1, 1, 2, 2, 3, 4], [1, 1, 2, 2, 3, 4]],
[[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]],
[[1, 1, 2, 2, 3, 4], [1, 1, 2, 2, 3, 4], [1, 1, 2, 2, 3, 4]]])
'''对于多维数组'''
print 'constant: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'constant'))
print 'edge: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'edge'))
print 'linear_ramp: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'linear_ramp'))
print 'maximum: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'maximum'))
print 'mean: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'mean'))
print 'median: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'median'))
print 'minimum: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'minimum'))
print 'reflect: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'reflect'))
print 'symmetric: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'symmetric'))
print 'wrap: \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'wrap'))

---------------------
作者:hustqb
来源:CSDN
原文:https://blog.csdn.net/hustqb/article/details/77726660
版权声明:本文为博主原创文章,转载请附上博文链接!

图文并茂的Python教程-numpy.pad的更多相关文章

  1. python中numpy.pad简单填充0用法

    # -*- coding: utf-8 -*-"""Created on Sun Apr 28 22:07:02 2019 @author: jiangshan" ...

  2. 给深度学习入门者的Python快速教程 - numpy和Matplotlib篇

    始终无法有效把word排版好的粘贴过来,排版更佳版本请见知乎文章: https://zhuanlan.zhihu.com/p/24309547 实在搞不定博客园的排版,排版更佳的版本在: 给深度学习入 ...

  3. Python之Numpy详细教程

    NumPy - 简介 NumPy 是一个 Python 包. 它代表 “Numeric Python”. 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前 ...

  4. python数据分析Numpy(二)

    Numpy (Numerical Python) 高性能科学计算和数据分析的基础包: ndarray,多维数组(矩阵),具有矢量运算能力,快速.节省空间: 矩阵运算,无需循环,可以完成类似Matlab ...

  5. [转]python与numpy基础

    来源于:https://github.com/HanXiaoyang/python-and-numpy-tutorial/blob/master/python-numpy-tutorial.ipynb ...

  6. Python:numpy中的tile函数

    在学习机器学习实教程时,实现KNN算法的代码中用到了numpy的tile函数,因此对该函数进行了一番学习: tile函数位于python模块 numpy.lib.shape_base中,他的功能是重复 ...

  7. Python之Numpy:线性代数/矩阵运算

    当你知道工具的用处,理论与工具如何结合的时候,通常会加速咱们对两者的学习效率. 零 numpy 那么,Numpy是什么? NumPy(Numerical Python) 是 Python 语言的一个扩 ...

  8. 超过 150 个最佳机器学习,NLP 和 Python教程

    超过 150 个最佳机器学习,NLP 和 Python教程 微信号 & QQ:862251340微信公众号:coderpai简书地址:http://www.jianshu.com/p/2be3 ...

  9. 写给.NET开发者的Python教程(一):引言

    距离上一篇博文已过去8个月了,这段时间发生了很多事情导致没能持续更新博客.这段时间除了工作繁忙,业余时间都投入到AI技术的学习中,后面一段时间将会给大家分享我作为一个.NET开发人员在深度学习领域学习 ...

随机推荐

  1. MT【29】介绍向量的外积及应用举例

    我们在学校教材里学到的数量积(内积)其实还有一个孪生兄弟向量积(外积),这个对参加自主招生以及竞赛的学生来讲是需要掌握的,这里稍作介绍: 原理: 例题: 应用:

  2. HTM L百度地图API 自定义工具地图实例

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  3. 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)

    [51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...

  4. 【BZOJ3811】玛里苟斯(线性基)

    [BZOJ3811]玛里苟斯(线性基) 题面 BZOJ 题解 \(K=1\)很容易吧,拆位考虑贡献,所有存在的位出现的概率都是\(0.5\),所以答案就是所有数或起来的结果除二. \(K=2\)的情况 ...

  5. 【转】Linux常用命令

    日常操作命令 查看当前所在的工作目录的全路径 pwd 12 [root@localhost ~]# pwd/root 查看当前系统的时间 date 12345678 [root@localhost ~ ...

  6. 牛客练习赛 小A与任务 解题报告

    小A与任务 链接: https://ac.nowcoder.com/acm/contest/369/B 来源:牛客网 题目描述 小A手头有 \(n\) 份任务,他可以以任意顺序完成这些任务,只有完成当 ...

  7. java匹配竖线的错误警示

    String s1 = "|"; // 输出 | System.out.println(s1); String s2 = s1.replaceAll("|",& ...

  8. Spring Cloud(四) --- config

    Spring Cloud Config 随着线上项目变的日益庞大,每个项目都散落着各种配置文件,如果采用分布式的开发模式,需要的配置文件随着服务增加而不断增多.某一个基础服务信息变更,都会引起一系列的 ...

  9. 前端学习 -- Html&Css -- ie6 png 背景问题

    在IE6中对图片格式png24支持度不高,如果使用的图片格式是png24,则会导致透明效果无法正常显示 解决方法: 1.可以使用png8来代替png24,即可解决问题,但是使用png8代替png24以 ...

  10. 大公司面试经典数据结构与算法题C#/Java解答

    几个大公司(IBM.MicroSoft and so on)面试经典数据结构与算法题C#解答 1.链表反转 我想到了两种比较简单的方法 第一种是需要开一个新的链表,将原链表的元素从后到前的插入到新链表 ...