Description

一个长度为 n 的序列 a ,设其排过序之后为 b ,其中位数定义为 b[n/2] ,其中 a,b 从 0 开始标号 , 除法取下整。 
给你一个长度为 n 的序列 s 。回答 Q 个这样的询问 : s 的左端点在 [a,b] 之间 , 右端点在 [c,d] 之间的子序列中 ,最大的中位数。 
其中 a

Solution

对着题解理解了半天……又对着代码调了半天……最后发现竟然是一个函数名没写orz

不过不得不说这题真的是主席树好题

先考虑二分答案,找出区间内比mid小的数有多少

因为对答案的贡献只有有或没有,所以可以把比mid小的都设为-1,比mid大的都设为1,如果区间内的和大于等于0,说明mid可行,继续二分下去

然而如果离散之后对每一个值建树,空间毫无疑问爆炸

于是只要用主席树维护一下就可以了

 //minamoto
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char obuf[<<],*o=obuf;
inline void print(int x){
if(x>) print(x/);
*o++=x%+;
}
const int N=,M=N*;
int n,Pre,q,cnt;
int rt[N],p[];
struct node{
int l,r,lmx,rmx,sum;
}t[M],op;
struct data{
int x,id;
inline bool operator <(const data &b)const
{return x<b.x;}
}a[N];
inline void pushup(int x){
t[x].sum=t[t[x].l].sum+t[t[x].r].sum;
t[x].lmx=max(t[t[x].l].lmx,t[t[x].l].sum+t[t[x].r].lmx);
t[x].rmx=max(t[t[x].r].rmx,t[t[x].r].sum+t[t[x].l].rmx);
}
void build(int &now,int l,int r){
now=++cnt;
if(l==r){t[now].lmx=t[now].rmx=t[now].sum=;return;}
int mid=(l+r)>>;
build(t[now].l,l,mid);
build(t[now].r,mid+,r);
pushup(now);
}
void update(int last,int &now,int l,int r,int k){
now=++cnt;
if(l==r){t[now].lmx=t[now].rmx=t[now].sum=-;return;}
int mid=(l+r)>>;
if(k<=mid) t[now].r=t[last].r,update(t[last].l,t[now].l,l,mid,k);
else t[now].l=t[last].l,update(t[last].r,t[now].r,mid+,r,k);
pushup(now);
}
node merge(node x,node y){
node z;
z.sum=x.sum+y.sum;
z.lmx=max(x.lmx,x.sum+y.lmx);
z.rmx=max(y.rmx,y.sum+x.rmx);
return z;
}
node find(int x,int l,int r,int y,int z){
if(y>z) return op;
if(l==y&&r==z) return t[x];
int mid=(l+r)>>;
if(z<=mid) return find(t[x].l,l,mid,y,z);
else if(y>mid) return find(t[x].r,mid+,r,y,z);
else return merge(find(t[x].l,l,mid,y,mid),find(t[x].r,mid+,r,mid+,z));
}
int query(int x){
return find(rt[x],,n,p[],p[]).rmx+find(rt[x],,n,p[]+,p[]-).sum+find(rt[x],,n,p[],p[]).lmx;
}
int main(){
//freopen("testdata.in","r",stdin);
n=read();
for(int i=;i<=n;++i) a[i].x=read(),a[i].id=i;
sort(a+,a++n);
build(rt[],,n);
for(int i=;i<=n;++i) update(rt[i-],rt[i],,n,a[i-].id);
q=read();
while(q--){
int x=read(),y=read(),z=read(),k=read();
p[]=(x+Pre)%n+,p[]=(y+Pre)%n+,p[]=(z+Pre)%n+,p[]=(k+Pre)%n+;
sort(p+,p+);
int l=,r=n,ans=;
while(l<=r){
int mid=(l+r)>>;
int f=query(mid);
if(f>=) ans=mid,l=mid+;
else r=mid-;
}
Pre=a[ans].x;
print(a[ans].x),*o++='\n';
}
fwrite(obuf,o-obuf,,stdout);
return ;
}

【bzoj2653】【middle】【主席树+二分答案】的更多相关文章

  1. [BZOJ2653]middle 主席树+二分

    2653: middle Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2042  Solved: 1123[Submit][Status][Disc ...

  2. BZOJ 2653: middle(主席树+二分答案)

    传送门 解题思路 首先可以想到一种暴力做法,就是询问时二分,然后大于等于这个值的设为1,否则设为-1,然后就和GSS1那样统计答案.但是发现这样时间空间复杂度都很爆炸,所以考虑预处理,可以用主席树来做 ...

  3. bzoj 2653: middle (主席树+二分)

    2653: middle Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2522  Solved: 1434[Submit][Status][Disc ...

  4. BZOJ 1926: [Sdoi2010]粟粟的书架(主席树,二分答案)

    BZOJ 1926: [Sdoi2010]粟粟的书架(主席树,二分答案) 题意 : 给你一个长为\(R\)宽为\(C\)的矩阵,第\(i\)行\(j\)列的数为\(P_{i,j}\). 有\(m\)次 ...

  5. BZOJ5343[Ctsc2018]混合果汁——主席树+二分答案

    题目链接: CTSC2018混合果汁 显然如果美味度高的合法那么美味度低的一定合法,因为美味度低的可选方案包含美味度高的可选方案. 那么我们二分一个美味度作为答案然后考虑如何验证? 选择时显然要贪心的 ...

  6. P4094 [HEOI2016/TJOI2016]字符串 后缀数组+主席树+二分答案

    $ \color{#0066ff}{ 题目描述 }$ 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为n的字符串s,和m个问题.佳媛姐姐必须 ...

  7. BZOJ 4556 [Tjoi2016&Heoi2016]字符串 ——后缀数组 ST表 主席树 二分答案

    Solution 1: 后缀数组暴力大法好 #include <map> #include <cmath> #include <queue> #include &l ...

  8. HDU - 6621 K-th Closest Distance 主席树+二分答案

    K-th Closest Distance 主席树第二波~ 题意 给你\(n\)个数\(m\)个询问,问\(i\in [l,r]\)计算每一个\(|a_{i}-p|\)求出第\(k\)小 题目要求强制 ...

  9. BZOJ 2653: middle 主席树 二分

    https://www.lydsy.com/JudgeOnline/problem.php?id=2653 因为是两个方向向外延伸所以不能对编号取前缀和(这里只有前缀和向后传递的性质,不是实际意义的和 ...

随机推荐

  1. 【洛谷P4054】计数问题

    题目大意:维护 N*M 个点,每个点有三个权值,支持单点修改,查询矩形区间内权值等于某个值的点的个数. 题解:矩阵可以看成两个维度,权值为第三个维度,为一个三维偏序维护问题.发现第三维仅仅为单点修改和 ...

  2. @Value加载classpath下的文件

    maven工程中,要加载classpath下的文件并以InputStream的形式返回,通常使用的方法是 InputStream inputStream = Test.class.getClassLo ...

  3. 关于Picasso load本地图片显示失败的探究

    今天测试找过来说图片不显示了,查了一下是Picasso加载本地图片没有显示,奇怪了,以前都是这样写为什么现在不行了,难道是Picasso有bug了,怀着激动的心情断点跟进去发现 Picasso所有lo ...

  4. 在IIS6中配置html文件以ASPX方式工作

    在IIS6中配置html文件以ASPX方式工作 由于IIS6的安全不断提高,如果你需要设置html文件以ASPX文件方式被执行.仅仅设置应用程序映射是不够的,还 需要修改一些其他设置. 如果你只修改了 ...

  5. TCP UDP 数据包过大导致分片情况

    MTU大家都知道,是链路层中的网络对数据帧的一个限制,依然以以太网为例,MTU为1500个字节.一个IP数据报在以太网中 传输,如果它的长度大于该MTU值,就要进行分片传输,使得每片数据报的长度小于M ...

  6. css 实现背景图片不跟着滚动条滚动而滚动

    效果: 只需要在需要背景不跟着动的div里: div{ background:url(); background-attachment:fixed; } 加上background-attachment ...

  7. ​python高级数据可视化视频Dash1

    在谷歌浏览器输入http://127.0.0.1:8050/后,回车,看到下图可视化结果 # -*- coding: utf-8 -*- """ Created on S ...

  8. Python基础【day01】:python 2和3区别(四)

    许多Python初学者都会问:我应该学习哪个版本的Python.对于这个问题,我的回答通常是“先选择一个最适合你的Python教程,教程中使用哪个版本的Python,你就用那个版本.等学得差不多了,再 ...

  9. 9、JPA-映射-双向多对多

    实体类 Category package com.jpa.yingshe; import java.util.HashSet; import java.util.Set; import javax.p ...

  10. spring boot(九):Spring Boot中Redis的使用

    Redis实战代码 1.引入 spring-boot-starter-redis <dependency> <groupId>org.springframework.boot& ...