这段时间看了不少论文,回头看看,感觉还是有必要将Faster rcnn的源码理解一下,毕竟后来很多方法都和它有相近之处,同时理解该框架也有助于以后自己修改和编写自己的框架。好的开始吧~

这里我们跟着Faster rcnn的训练流程来一步一步梳理,进入tools\train_faster_rcnn_alt_opt.py中:

首先从__main__入口处进入,如下:

上图中首先对终端中的命令行进行解析,获取相关的命令参数;然后利用mp.Queue()创建一个多线程的对象,再利用get_solvers()获得solvers等信息;然后就开始了论文中的“四步训练”:

第一步,首先训练RPN网络:

上图中,先开始子进程训练RPN,训练函数是train_rpn(),那么我们就进入这个函数一探究竟:

这里首先使用cfg设置训练时的一些设置参数(cfg类是一个字典,其定义在config.py中,属于网络训练时的配置文件)(注意这里的cfg.TRAIN.PROPOSAL_METHOD = 'gt'这在后面会用到),然后是初始化caffe,这里主要是设置了随机数种子,以及使用caffe训练时的模式(gpu/cpu);之后就是第一个重头戏--获取imdb和roidb格式的训练数据:

进入get_roidb()函数,如下:

首先通过get_imdb()函数获得imdb数据,那我们就再进入get_imdb()函数一探究竟,如下:

这里其实也是调用了pascal_voc()函数来创建imdb数据,pascal_voc类见pascal_voc.py文件中,如下:

这里只截取了一部分,可以发现,pascal_voc这个类主要用来组织输入的图片数据,存储图片的相关信息,但并不存储图片;而实际上,pascal_voc类是imdb类的一个子类;好了现在imdb数据已经获得了,再回到get_roidb()中,紧接着set_proposal_method()函数设置了产生proposal的方法,实际也是向imdb中添加roidb数据,进入set_proposal_method()这个函数:

首先用eval()对这个方法进行解析,使其有效,再传入roidb_handler中,这里就要回到之前的train_rpn()函数中了,它里面设置了cfg.TRAIN.PROPOSAL_METHOD='gt'(默认值是selective search,先前用于fast rcnn的),先进入gt_roidb()函数中:

这里gt_roidb()中实际是使用_load_pascal_annotation()通过解析XML文件获得gt的roi的,进入该解析函数:

可以发现,roidb的结构是一个包含有5个key的字典,具体值见上面代码~

这个时候就从imdb获得了最初的roidb格式的数据,但这还不是训练时的roidb数据,再回到get_roidb()函数中,通过get_training()函数得到最终用于训练的roidb数据,进入该函数:

先根据cfg.TRAIN.USE_FLIPPED判断是否需要对roi进行水平镜像翻转(注意这里的镜像的对称轴是图片的中心线),然后使用append_flipped_images()添加镜像roi,作者认为这样子能提高最终网络的训练结果(这应该算是一种简单的数据增强吧),进入该函数:

添加之后还没结束呢,回到get_training_roidb()中,最后还要再经过一步prepare_roidb(),进入该函数:

向roidb中再添加一些额外的信息就可以用来进行训练了(注意这还只是第一步,训练总共四步),好了,到这儿,关于获取roidb和imdb的代码就介绍到这儿了~

(转载请注明出处)

Faster rcnn代码理解(1)的更多相关文章

  1. Faster RCNN代码理解(Python)

    转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初 ...

  2. Faster rcnn代码理解(4)

    上一篇我们说完了AnchorTargetLayer层,然后我将Faster rcnn中的其他层看了,这里把ROIPoolingLayer层说一下: 我先说一下它的实现原理:RPN生成的roi区域大小是 ...

  3. Faster rcnn代码理解(2)

    接着上篇的博客,咱们继续看一下Faster RCNN的代码- 上次大致讲完了Faster rcnn在训练时是如何获取imdb和roidb文件的,主要都在train_rpn()的get_roidb()函 ...

  4. Faster rcnn代码理解(3)

    紧接着之前的博客,我们继续来看faster rcnn中的AnchorTargetLayer层: 该层定义在lib>rpn>中,见该层定义: 首先说一下这一层的目的是输出在特征图上所有点的a ...

  5. 原 CNN--卷积神经网络从R-CNN到Faster R-CNN的理解(CIFAR10分类代码)

    1. 什么是CNN 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Netwo ...

  6. Faster R-CNN代码例子

    主要参考文章:1,从编程实现角度学习Faster R-CNN(附极简实现) 经常是做到一半发现收敛情况不理想,然后又回去看看这篇文章的细节. 另外两篇: 2,Faster R-CNN学习总结      ...

  7. 对Faster R-CNN的理解(1)

    目标检测是一种基于目标几何和统计特征的图像分割,最新的进展一般是通过R-CNN(基于区域的卷积神经网络)来实现的,其中最重要的方法之一是Faster R-CNN. 1. 总体结构 Faster R-C ...

  8. Rcnn/Faster Rcnn/Faster Rcnn的理解

    基于候选区域的目标检测器 1.  滑动窗口检测器 根据滑动窗口从图像中剪切图像块-->将剪切的图像块warp成固定大小-->cnn网络提取特征-->SVM和regressor进行分类 ...

  9. Faster RCNN代码解析

    1.faster_rcnn_end2end训练 1.1训练入口及配置 def train(): cfg.GPU_ID = 0 cfg_file = "../experiments/cfgs/ ...

随机推荐

  1. 自学Aruba6.3-账号管理(web页面配置)

    点击返回:自学Aruba之路 自学Aruba6.3-账号管理(web页面配置) 1 管理员账号管理 Configuration---Administrator中 角色名称 说明 root 该角色允许管 ...

  2. 【转】Context Switches上下文切换性能详解

    http://blog.csdn.net/aiai5251/article/details/50015745 Context Switches 上下文切换,有时也被称为进程切换(process swi ...

  3. coursera吴恩达 机器学习编程作业原文件 及我的作业

    保存在github上供广大网友下载:点击 8个zip,原文件,没有任何改动. 另外,不定期上传我自己关于这门课的学习过程笔记和心得,有兴趣的盆友可以点击这里查看.

  4. 树链剖分&dfs序

    树上问题 很多处理区间的问题(像是RMQ,区间修改).可以用线段树,树状数组,ST表这些数据结构来维护.但是如果将这些问题挪到了树上,就不能直接用这些数据结构来处理了.这时就用到了dfs序和树链剖分. ...

  5. go map数据结构

    map数据结构 key-value的数据结构,又叫字典或关联数组 声明: var map1 map[keytype]valuetype var a map[string]string var a ma ...

  6. Spark进阶之路-Spark提交Jar包执行

    Spark进阶之路-Spark提交Jar包执行 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在实际开发中,使用spark-submit提交jar包是很常见的方式,因为用spark ...

  7. Linux命令之cd

    cd命令 用处:跳转目录 用法:输入cd加上你想跳转的目录,这里分几种情况 示例: 一.进入当前目录的子目录 我现在的目录是 /home/jim,如图 这个目录下面有好多文件夹是吧,现在我想进入到其中 ...

  8. JavaScript Array() 对象:push() 和 join() 方法

    <script> var fruits = ["Banana", "Orange", "Apple", "Mango& ...

  9. java自带BASE64工具进行图片和字符串转换【转】

    java自带BASE64工具进行图片和字符串转换 import java.io.File; import java.io.FileInputStream; import java.io.FileOut ...

  10. python 内建函数专题

    all 用来控制 import , 甚至可以改变 _private 为 public enter , exit 用于上下文管理器 iter 用于迭代器 repr 给计算机读, str ==> s ...