题目链接 : https://leetcode-cn.com/problems/largest-rectangle-in-histogram/

题目描述:

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积。

以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]。

图中阴影部分为所能勾勒出的最大矩形面积,其面积为 10 个单位。

示例:

输入: [2,1,5,6,2,3]
输出: 10

思路:

首先,想找到第i位置最大面积是什么?

是以i为中心,向左找第一个小于heights[i]的位置left_i;向右找第一个小于于heights[i]的位置right_i,即最大面积为heights[i] * (right_i - left_i -1),如下图所示:

所以,我们的问题就变成如何找right_ileft_i?

最简单的思路就是,就是暴力法,直接分别在i左右移动

class Solution:
def largestRectangleArea(self, heights: List[int]) -> int:
res = 0
n = len(heights)
for i in range(n):
left_i = i
right_i = i
while left_i >= 0 and heights[left_i] >= heights[i]:
left_i -= 1
while right_i < n and heights[right_i] >= heights[i]:
right_i += 1
res = max(res, (right_i - left_i - 1) * heights[i])
return res

但是,这是一个时间复杂度为\(O(n^2)\),超时

接下来想办法优化.

思路一:

当我们找i左边第一个小于heights[i]如果heights[i-1] >= heights[i]其实就是和heights[i-1]左边第一个小于heights[i-1]一样.依次类推,右边同理.

思路二:栈

利用单调栈,我写过关于它一篇文章

维护一个单调递增的栈,就可以找到left_iright_i

代码:

思路一:

class Solution:
def largestRectangleArea(self, heights: List[int]) -> int:
if not heights:
return 0
n = len(heights)
left_i = [0] * n
right_i = [0] * n
left_i[0] = -1
right_i[-1] = n
for i in range(1, n):
tmp = i - 1
while tmp >= 0 and heights[tmp] >= heights[i]:
tmp = left_i[tmp]
left_i[i] = tmp
for i in range(n - 2, -1, -1):
tmp = i + 1
while tmp < n and heights[tmp] >= heights[i]:
tmp = right_i[tmp]
right_i[i] = tmp
# print(left_i)
# print(right_i)
res = 0
for i in range(n):
res = max(res, (right_i[i] - left_i[i] - 1) * heights[i])
return res

java

class Solution {
public int largestRectangleArea(int[] heights) {
if (heights == null || heights.length == 0) return 0;
int n = heights.length;
int[] left_i = new int[n];
int[] right_i = new int[n];
left_i[0] = -1;
right_i[n - 1] = n;
int res = 0;
for (int i = 1; i < n; i++) {
int tmp = i - 1;
while (tmp >= 0 && heights[tmp] >= heights[i]) tmp = left_i[tmp];
left_i[i] = tmp;
}
for (int i = n - 2; i >= 0; i--) {
int tmp = i + 1;
while (tmp < n && heights[tmp] >= heights[i]) tmp = right_i[tmp];
right_i[i] = tmp;
}
for (int i = 0; i < n; i++) res = Math.max(res, (right_i[i] - left_i[i] - 1) * heights[i]);
return res;
}
}

思路二:

class Solution:
def largestRectangleArea(self, heights: List[int]) -> int:
stack = []
heights = [0] + heights + [0]
res = 0
for i in range(len(heights)):
#print(stack)
while stack and heights[stack[-1]] > heights[i]:
tmp = stack.pop()
res = max(res, (i - stack[-1] - 1) * heights[tmp])
stack.append(i)
return res

java

class Solution {
public int largestRectangleArea(int[] heights) {
int res = 0;
Deque<Integer> stack = new ArrayDeque<>();
int[] new_heights = new int[heights.length + 2];
for (int i = 1; i < heights.length + 1; i++) new_heights[i] = heights[i - 1];
//System.out.println(Arrays.toString(new_heights));
for (int i = 0; i < new_heights.length; i++) {
//System.out.println(stack.toString());
while (!stack.isEmpty() && new_heights[stack.peek()] > new_heights[i]) {
int cur = stack.pop();
res = Math.max(res, (i - stack.peek() - 1) * new_heights[cur]);
}
stack.push(i);
}
return res;
}
}

[LeetCode] 84. 柱状图中最大的矩形的更多相关文章

  1. LeetCode 84. 柱状图中最大的矩形(Largest Rectangle in Histogram)

    84. 柱状图中最大的矩形 84. Largest Rectangle in Histogram

  2. Java实现 LeetCode 84 柱状图中最大得矩形

    84. 柱状图中最大的矩形 给定 n 个非负整数,用来表示柱状图中各个柱子的高度.每个柱子彼此相邻,且宽度为 1 . 求在该柱状图中,能够勾勒出来的矩形的最大面积. 以上是柱状图的示例,其中每个柱子的 ...

  3. LeetCode 84. 柱状图中最大的矩形(Largest Rectangle in Histogram)

    题目描述 给定 n 个非负整数,用来表示柱状图中各个柱子的高度.每个柱子彼此相邻,且宽度为 1 . 求在该柱状图中,能够勾勒出来的矩形的最大面积. 以上是柱状图的示例,其中每个柱子的宽度为 1,给定的 ...

  4. leetcode 84. 柱状图中最大的矩形 JAVA

    题目: 给定 n 个非负整数,用来表示柱状图中各个柱子的高度.每个柱子彼此相邻,且宽度为 1 . 求在该柱状图中,能够勾勒出来的矩形的最大面积. 以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高 ...

  5. Leetcode84. 柱状图中最大的矩形(单调栈)

    84. 柱状图中最大的矩形 前置 单调栈 做法 连续区间组成的矩形,是看最短的那一块,求出每一块左边第一个小于其高度的位置,右边也同理,此块作为最短限制.需要两次单调栈 单调栈维护递增区间,每次不满足 ...

  6. LeetCode---84. 柱状图中最大的矩形(hard)

    题目:84. 柱状图中最大的矩形 给定 n 个非负整数,用来表示柱状图中各个柱子的高度.每个柱子彼此相邻,且宽度为 1 . 求在该柱状图中,能够勾勒出来的矩形的最大面积. 示例: 输入: [2,1,5 ...

  7. 【LeetCode】84. Largest Rectangle in Histogram 柱状图中最大的矩形(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 单调栈 日期 题目地址: https://leetc ...

  8. LeetCode 84. Largest Rectangle in Histogram 单调栈应用

    LeetCode 84. Largest Rectangle in Histogram 单调栈应用 leetcode+ 循环数组,求右边第一个大的数字 求一个数组中右边第一个比他大的数(单调栈 Lee ...

  9. LeetCode(84): 柱状图中最大的矩形

    Hard! 题目描述: 给定 n 个非负整数,用来表示柱状图中各个柱子的高度.每个柱子彼此相邻,且宽度为 1 . 求在该柱状图中,能够勾勒出来的矩形的最大面积. 以上是柱状图的示例,其中每个柱子的宽度 ...

随机推荐

  1. Burpsuite查看和修改请求

    打开上传测试网页(此处是自己搭建的OWASP平台),这个网页只能上传图片格式的文件 上传一张图片: 查看上传图片: 创建一个test.text文件: 配置浏览器代理,IP:127.0.0.1,端口:8 ...

  2. vue - 登录验证与权限控制

    描述具体问题 需求 业务系统通常需要登录才能访问受限资源,在用户未登录情况下访问受限资源需要重定向到登录页面: 多个业务系统之间要实现单点登录,即在一个系统或应用已登录的情况下,再访问另一个系统时不需 ...

  3. JPA学习(五、JPA_二级缓存)

    框架学习之JPA(五) JPA是Java Persistence API的简称,中文名Java持久层API,是JDK 5.0注解或XML描述对象-关系表的映射关系,并将运行期的实体对象持久化到数据库中 ...

  4. 线程工具类ThreadUtils

    package yqw.java.util; public class ThreadUtils { /**     * showThreadInfo     *      * @return     ...

  5. Python3学习笔记(九):赋值,浅拷贝和深拷贝区别

    一.变量赋值 在Python可变数据类型(列表,字典,集合)中,把一个可变数据类型的变量赋给另一个变量,这两个变量引用的是同一个对象,内存地址是一样的,修改当中的一个变量,另一个变量相应也会被修改 & ...

  6. 程序员心髓:移动应用API设计10大技巧

    移动App与基于Web/云服务发生对话是很常见的事情,最简单的可能仅仅只是检索数据,但也可能包含发送数据.用户授权和管理.而这也就验证了为移动应用建立API的重要性,为此,我们特总结了10大移动API ...

  7. for aws associate exam

    Topics which I read based on the previous forum discussions Amazon DynamoDB January 2016 Day at the ...

  8. 每日踩坑 2019-07-30 H5 使用 iframe 底部有白边

    用个iframe累死累活的 用 js 动态计算高度, 结果明明px都对,然后却把页面滚动条也整出来了. 查看元素盒模型也一切正常. 然后仔细观察就发现是下边多了几个像素的白色边. 然后就 百度呗 以下 ...

  9. legend3---PHP使用阿里云短信服务

    legend3---PHP使用阿里云短信服务 一.总结 一句话总结: 使用步骤照官方文档,代码拷贝即可 1.php使用阿里云短信服务的步骤? 入驻阿里云->开通短信服务->获取Access ...

  10. centos设置定时删除文件定时清理网站日志

    1.进入linux系统 2.在任意目录创建一个sh后缀的文件,如: 3.编辑打开该文件,如图: 4.此时按键盘上的“i”键或者“insert”键,进入编辑模式 输入: #!/bin/shfind /d ...